Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.

Bunday, K.L., Urbin, M.A. and Perez, M.A. 2018. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury. Brain Stimulation. 11, pp. 1083-1092. https://doi.org/10.1016/j.brs.2018.05.006

TitlePotentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
AuthorsBunday, K.L., Urbin, M.A. and Perez, M.A.
Abstract

Background: Paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal transmission in humans with chronic incomplete spinal cord injury (SCI).Objective/Hypothesis: Here, we examine whether increases in the excitability of spinal motoneurons, by performing a voluntary activity, could potentiate PCMS effects on corticospinal transmission.Methods: During PCMS, we used 100 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ~1e2msbefore antidromic potentials were elicited in motoneurons by electrical stimulation of the ulnar nerve. PCMS was applied at rest (PCMSrest) and during a small level of isometric index finger abduction(PCMSactive) on separate days. Motor evoked potentials (MEPs) elicited by TMS and electrical stimulation were measured in the FDI muscle before and after each protocol in humans with and without (controls)chronic cervical SCI. Results: We found in control participants that MEPs elicited by TMS and electrical stimulation increased to a similar extent after both PCMS protocols for ~30 min. Whereas, in humans with SCI, MEPs elicited by TMS and electrical stimulation increased to a larger extent after PCMSactivecompared with PCMSrest.Importantly, SCI participants who did not respond to PCMSrestresponded after PCMSactiveand those who responded to both protocols showed larger increments in corticospinal transmission after PCMSactive.Conclusions: Our findings suggest that muscle contraction during PCMS potentiates corticospinal transmission. PCMS applied during voluntary activity may represent a strategy to boost spinal plasticity after SCI.

KeywordsNeuroplasticity, Spinal cord injury, Corticospinal-motoneuronal, Spike-timing dependent plasticity, Neurophysiology, Corticospinal
JournalBrain Stimulation
Journal citation11, pp. 1083-1092
ISSN1935-861X
Year2018
PublisherElsevier
Accepted author manuscript
Digital Object Identifier (DOI)https://doi.org/10.1016/j.brs.2018.05.006
PubMed ID29848448
Web address (URL)http://europepmc.org/abstract/med/29848448
Publication dates
PublishedMay 2018
LicenseCC BY-NC-ND 4.0

Related outputs

The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability
Al’joboori, Yazi, Hannah, Ricci, Lenham, Francesca, Borgas, Pia, Kremers, Charlotte J. P., Bunday, Karen L., Rothwell, John and Duffell, Lynsey D. 2021. The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Frontiers in Neuroscience. 15, p. 749042. https://doi.org/10.3389/fnins.2021.749042

Putative propriospinal modulation of premotor and motor cortical output during grasping
Bunday, K.L., Poh, Z., Azzopardi, S. and Davare, M. 2018. Putative propriospinal modulation of premotor and motor cortical output during grasping. Society for Neuroscience. San Diego, USA 03 - 07 Nov 2018

Grasp-specific motor resonance is influenced by the visibility of the observed actor.
Bunday, K.L., Lemon, R.N., Kilner, J.M., Davare, M. and Orban, G.A. 2016. Grasp-specific motor resonance is influenced by the visibility of the observed actor. Cortex. 84, pp. 43-54. https://doi.org/10.1016/j.cortex.2016.09.002

A Causal Role for Primary Motor Cortex in Perception of Observed Actions.
Palmer, C.E., Bunday, K.L., Davare, M. and Kilner, J.M. 2016. A Causal Role for Primary Motor Cortex in Perception of Observed Actions. Journal of Cognitive Neuroscience. 28 (12), pp. 2021-2029. https://doi.org/10.1162/jocn_a_01015

Locomotor adaptation is modulated by observing the actions of others
Patel, M., Roberts, R.E, Risyaz, M.U., Buckwell, D., Bunday, K.L., Ahmad, H., Kaski, D., Arshad, Q. and Bronstein, A.M. 2015. Locomotor adaptation is modulated by observing the actions of others. Journal of Neurophysiology. 114 (3), pp. 1538-1544. https://doi.org/10.1152/jn.00446.2015

Subcortical control of precision grip after human spinal cord injury.
Bunday, K.L., Tazoe, T., Rothwell, J.C. and Perez, M.A. 2014. Subcortical control of precision grip after human spinal cord injury. Journal of Neuroscience. 21 (34), p. 7341–7350. https://doi.org/10.1523/jneurosci.0390-14.2014

Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia
Barry, M.D., Bunday, K.L., Chen, R. and Perez, M.A. 2013. Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia. Journal of Neuroscience. 33 (31), pp. 12898-12907. https://doi.org/10.1523/jneurosci.1552-13.2013

Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.
Bunday, K.L., Oudega, M. and Perez, M.A. 2013. Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury. PLoS ONE. 8 (10) e76747. https://doi.org/10.1371/journal.pone.0076747

Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury
Bunday, K.L. and Perez, M.A. 2012. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. Journal of Neurophysiology. https://doi.org/10.1152/jn.00850.2011

Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission.
Bunday, K.L. and Perez, M.A. 2012. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Current Biology. 22 (24), pp. P2355-2361. https://doi.org/10.1016/j.cub.2012.10.046

What does autonomic arousal tell us about locomotor learning?
Green, D.A., Bunday, K.L., Bowen, J., Carter, T. and Bronstein, A.M. 2010. What does autonomic arousal tell us about locomotor learning? Neuroscience. 170 (1), pp. 42-53. https://doi.org/10.1016/j.neuroscience.2010.06.079

What the "broken escalator" phenomenon teaches us about balance.
Bronstein, A.M., Bunday, K.L. and Reynolds, R. 2009. What the "broken escalator" phenomenon teaches us about balance. Annals of the New York Academy of Sciences. 1164 (1), pp. 82-88. https://doi.org/10.1111/j.1749-6632.2009.03870.x

Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy.
Bunday, K.L. and Bronstein, A.M. 2009. Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy. Journal of Neurophysiology. 102 (6), pp. 3119-3128. https://doi.org/10.1152/jn.00304.2009

Visuo-vestibular influences on the moving platform locomotor aftereffect.
Bunday, K.L. and Bronstein, A.M. 2008. Visuo-vestibular influences on the moving platform locomotor aftereffect. Journal of Neurophysiology. 99 (3), pp. 1354-1365. https://doi.org/10.1152/jn.01214.2007

The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect.
Bunday, K.L., Reynolds, R.F., Kaski, D., Rao, M., Salman, S. and Bronstein, A.M. 2006. The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect. Experimental Brain Research. https://doi.org/10.1007/s00221-006-0446-2

Permalink - https://westminsterresearch.westminster.ac.uk/item/q9q43/potentiating-paired-corticospinal-motoneuronal-plasticity-after-spinal-cord-injury


Share this

Usage statistics

77 total views
243 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.