The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability

Al’joboori, Yazi, Hannah, Ricci, Lenham, Francesca, Borgas, Pia, Kremers, Charlotte J. P., Bunday, Karen L., Rothwell, John and Duffell, Lynsey D. 2021. The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Frontiers in Neuroscience. 15, p. 749042. https://doi.org/10.3389/fnins.2021.749042

TitleThe Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability
TypeJournal article
AuthorsAl’joboori, Yazi, Hannah, Ricci, Lenham, Francesca, Borgas, Pia, Kremers, Charlotte J. P., Bunday, Karen L., Rothwell, John and Duffell, Lynsey D.
AbstractRehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects. Three separate experimental conditions were assessed. In Experiment I, paired associative stimulation (PAS) was applied, involving repeated pairing of single pulses of TMS and tSCS, either arriving simultaneously at the spinal motoneurones (PAS0ms) or slightly delayed (PAS5ms). Corticospinal and spinal excitability, and motor performance, were assessed before and after the PAS interventions in 24 subjects. Experiment II compared the immediate effects of tSCS and PNS on corticospinal excitability in 20 subjects. Experiment III compared the immediate effects of tSCS with tSCS delivered at the same stimulation amplitude but modulated with a carrier frequency (in the kHz range) on corticospinal excitability in 10 subjects. Electromyography (EMG) electrodes were placed over the Tibialis Anterior (TA) soleus (SOL) and vastus medialis (VM) muscles and stimulation electrodes (cathodes) were placed on the lumbar spine (tSCS) and lateral to the popliteal fossa (PNS). TMS over the primary motor cortex (M1) was paired with tSCS or PNS to produce Motor Evoked Potentials (MEPs) in the TA and SOL muscles. Simultaneous delivery of repetitive PAS (PAS0ms) increased corticospinal excitability and H-reflex amplitude at least 5 min after the intervention, and dorsiflexion force was increased in a force-matching task. When comparing effects on descending excitability between tSCS and PNS, a subsequent facilitation in MEPs was observed following tSCS at 30-50 ms which was not present following PNS. To a lesser extent this facilitatory effect was also observed with HF- tSCS at subthreshold currents. Here we have shown that repeated pairing of TMS and tSCS can increase corticospinal excitability when timed to arrive simultaneously at the alpha-motoneurone and can influence functional motor output. These results may be useful in optimizing stimulation parameters for neuroplasticity in people living with SCI.
KeywordsNeuroscience
corticospinal excitability
paired associative stimulation (PAS)
peripheral nerve stimulation (PNS)
rehabilitation
spinal cord stimulation (SCS)
transcranial magnetic stimulation
JournalFrontiers in Neuroscience
Journal citation15, p. 749042
ISSN1662-453X
Year2021
PublisherFrontiers Media S.A.
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.3389/fnins.2021.749042
Publication dates
Published online21 Oct 2021
Licensehttp://creativecommons.org/licenses/by/4.0/

Related outputs

Dissociated cerebellar contributions to feedforward gait adaptation
Bunday, Karen L., Ellmers, T., Wimalaratna, M. Rashmi, Nadarajah, Luxme and Bronstein, Adolfo M. 2024. Dissociated cerebellar contributions to feedforward gait adaptation. Experimental Brain Research. 242, pp. 1583-1593. https://doi.org/10.1007/s00221-024-06840-9

Putative propriospinal modulation of premotor and motor cortical output during grasping
Bunday, K.L., Poh, Z., Azzopardi, S. and Davare, M. 2018. Putative propriospinal modulation of premotor and motor cortical output during grasping. Society for Neuroscience. San Diego, USA 03 - 07 Nov 2018

Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
Bunday, K.L., Urbin, M.A. and Perez, M.A. 2018. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury. Brain Stimulation. 11, pp. 1083-1092. https://doi.org/10.1016/j.brs.2018.05.006

Grasp-specific motor resonance is influenced by the visibility of the observed actor.
Bunday, K.L., Lemon, R.N., Kilner, J.M., Davare, M. and Orban, G.A. 2016. Grasp-specific motor resonance is influenced by the visibility of the observed actor. Cortex. 84, pp. 43-54. https://doi.org/10.1016/j.cortex.2016.09.002

A Causal Role for Primary Motor Cortex in Perception of Observed Actions.
Palmer, C.E., Bunday, K.L., Davare, M. and Kilner, J.M. 2016. A Causal Role for Primary Motor Cortex in Perception of Observed Actions. Journal of Cognitive Neuroscience. 28 (12), pp. 2021-2029. https://doi.org/10.1162/jocn_a_01015

Locomotor adaptation is modulated by observing the actions of others
Patel, M., Roberts, R.E, Risyaz, M.U., Buckwell, D., Bunday, K.L., Ahmad, H., Kaski, D., Arshad, Q. and Bronstein, A.M. 2015. Locomotor adaptation is modulated by observing the actions of others. Journal of Neurophysiology. 114 (3), pp. 1538-1544. https://doi.org/10.1152/jn.00446.2015

Subcortical control of precision grip after human spinal cord injury.
Bunday, K.L., Tazoe, T., Rothwell, J.C. and Perez, M.A. 2014. Subcortical control of precision grip after human spinal cord injury. Journal of Neuroscience. 21 (34), p. 7341–7350. https://doi.org/10.1523/jneurosci.0390-14.2014

Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia
Barry, M.D., Bunday, K.L., Chen, R. and Perez, M.A. 2013. Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia. Journal of Neuroscience. 33 (31), pp. 12898-12907. https://doi.org/10.1523/jneurosci.1552-13.2013

Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.
Bunday, K.L., Oudega, M. and Perez, M.A. 2013. Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury. PLoS ONE. 8 (10) e76747. https://doi.org/10.1371/journal.pone.0076747

Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury
Bunday, K.L. and Perez, M.A. 2012. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. Journal of Neurophysiology. https://doi.org/10.1152/jn.00850.2011

Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission.
Bunday, K.L. and Perez, M.A. 2012. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Current Biology. 22 (24), pp. P2355-2361. https://doi.org/10.1016/j.cub.2012.10.046

What does autonomic arousal tell us about locomotor learning?
Green, D.A., Bunday, K.L., Bowen, J., Carter, T. and Bronstein, A.M. 2010. What does autonomic arousal tell us about locomotor learning? Neuroscience. 170 (1), pp. 42-53. https://doi.org/10.1016/j.neuroscience.2010.06.079

What the "broken escalator" phenomenon teaches us about balance.
Bronstein, A.M., Bunday, K.L. and Reynolds, R. 2009. What the "broken escalator" phenomenon teaches us about balance. Annals of the New York Academy of Sciences. 1164 (1), pp. 82-88. https://doi.org/10.1111/j.1749-6632.2009.03870.x

Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy.
Bunday, K.L. and Bronstein, A.M. 2009. Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy. Journal of Neurophysiology. 102 (6), pp. 3119-3128. https://doi.org/10.1152/jn.00304.2009

Visuo-vestibular influences on the moving platform locomotor aftereffect.
Bunday, K.L. and Bronstein, A.M. 2008. Visuo-vestibular influences on the moving platform locomotor aftereffect. Journal of Neurophysiology. 99 (3), pp. 1354-1365. https://doi.org/10.1152/jn.01214.2007

The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect.
Bunday, K.L., Reynolds, R.F., Kaski, D., Rao, M., Salman, S. and Bronstein, A.M. 2006. The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect. Experimental Brain Research. https://doi.org/10.1007/s00221-006-0446-2

Permalink - https://westminsterresearch.westminster.ac.uk/item/v9786/the-immediate-and-short-term-effects-of-transcutaneous-spinal-cord-stimulation-and-peripheral-nerve-stimulation-on-corticospinal-excitability


Share this

Usage statistics

120 total views
68 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.