The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect.

Bunday, K.L., Reynolds, R.F., Kaski, D., Rao, M., Salman, S. and Bronstein, A.M. 2006. The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect. Experimental Brain Research. https://doi.org/10.1007/s00221-006-0446-2

TitleThe effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect.
TypeJournal article
AuthorsBunday, K.L., Reynolds, R.F., Kaski, D., Rao, M., Salman, S. and Bronstein, A.M.
Abstract

Walking onto a stationary platform, which had been previously experienced as moving generates a locomotor aftereffect (LAE), which resembles the ‘broken escalator’ phenomenon. Experimentally, this is achieved by having subjects walk initially onto a stationary sled (BEFORE condition), then onto a moving sled (MOVING condition, or adaptation trials) and then again onto the stationary sled (AFTER condition). Subjects are always appropriately warned of the change in conditions. In this paper, we ask how many adaptation trials are needed to produce such a LAE. Thus, in two experiments, the number of MOVING trials was varied between 20 and 5 (Experiment 1) and between 8 and 1 (Experiment 2). Gait velocity, trunk position, foot contact timing and EMG of the ankle flexor-extensors muscles were measured. In comparison with BEFORE trials all groups in the AFTER trials walked inappropriately fast, experienced a large overshoot of the trunk and showed increased leg EMG, indicating that all groups showed a LAE. In each experiment, and for all variables, no significant difference between the groups (i.e. 20 down to one MOVING trials) was found. The study shows that this LAE, in contrast to other motor aftereffects reported in the literature, can be generated with only one or two adaptation trials and without requiring unexpected ‘catch’ trials. The fast aftereffect generation observed is likely to depend on two types of mechanisms: (1) the nature of the sensorimotor adaptation process, involving multiple sensory feedbacks (visual, vestibular and proprioceptive), anticipatory control and large initial task errors and (2) the involvement of two phylogenetically old neural mechanisms, namely locomotion and fear. Fear-relevant mechanisms, which are notably resistant to cognitive control, may be recruited during the adaptation trials and contribute to the release of this LAE.

JournalExperimental Brain Research
ISSN1432-1106
0014-4819
Year2006
PublisherSpringer
Digital Object Identifier (DOI)https://doi.org/10.1007/s00221-006-0446-2
PubMed ID16639502
Web address (URL)http://europepmc.org/abstract/med/16639502
Publication dates
Published26 Apr 2006

Related outputs

The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability
Al’joboori, Yazi, Hannah, Ricci, Lenham, Francesca, Borgas, Pia, Kremers, Charlotte J. P., Bunday, Karen L., Rothwell, John and Duffell, Lynsey D. 2021. The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Frontiers in Neuroscience. 15, p. 749042. https://doi.org/10.3389/fnins.2021.749042

Putative propriospinal modulation of premotor and motor cortical output during grasping
Bunday, K.L., Poh, Z., Azzopardi, S. and Davare, M. 2018. Putative propriospinal modulation of premotor and motor cortical output during grasping. Society for Neuroscience. San Diego, USA 03 - 07 Nov 2018

Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
Bunday, K.L., Urbin, M.A. and Perez, M.A. 2018. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury. Brain Stimulation. 11, pp. 1083-1092. https://doi.org/10.1016/j.brs.2018.05.006

Grasp-specific motor resonance is influenced by the visibility of the observed actor.
Bunday, K.L., Lemon, R.N., Kilner, J.M., Davare, M. and Orban, G.A. 2016. Grasp-specific motor resonance is influenced by the visibility of the observed actor. Cortex. 84, pp. 43-54. https://doi.org/10.1016/j.cortex.2016.09.002

A Causal Role for Primary Motor Cortex in Perception of Observed Actions.
Palmer, C.E., Bunday, K.L., Davare, M. and Kilner, J.M. 2016. A Causal Role for Primary Motor Cortex in Perception of Observed Actions. Journal of Cognitive Neuroscience. 28 (12), pp. 2021-2029. https://doi.org/10.1162/jocn_a_01015

Locomotor adaptation is modulated by observing the actions of others
Patel, M., Roberts, R.E, Risyaz, M.U., Buckwell, D., Bunday, K.L., Ahmad, H., Kaski, D., Arshad, Q. and Bronstein, A.M. 2015. Locomotor adaptation is modulated by observing the actions of others. Journal of Neurophysiology. 114 (3), pp. 1538-1544. https://doi.org/10.1152/jn.00446.2015

Subcortical control of precision grip after human spinal cord injury.
Bunday, K.L., Tazoe, T., Rothwell, J.C. and Perez, M.A. 2014. Subcortical control of precision grip after human spinal cord injury. Journal of Neuroscience. 21 (34), p. 7341–7350. https://doi.org/10.1523/jneurosci.0390-14.2014

Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia
Barry, M.D., Bunday, K.L., Chen, R. and Perez, M.A. 2013. Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia. Journal of Neuroscience. 33 (31), pp. 12898-12907. https://doi.org/10.1523/jneurosci.1552-13.2013

Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.
Bunday, K.L., Oudega, M. and Perez, M.A. 2013. Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury. PLoS ONE. 8 (10) e76747. https://doi.org/10.1371/journal.pone.0076747

Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury
Bunday, K.L. and Perez, M.A. 2012. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. Journal of Neurophysiology. https://doi.org/10.1152/jn.00850.2011

Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission.
Bunday, K.L. and Perez, M.A. 2012. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Current Biology. 22 (24), pp. P2355-2361. https://doi.org/10.1016/j.cub.2012.10.046

What does autonomic arousal tell us about locomotor learning?
Green, D.A., Bunday, K.L., Bowen, J., Carter, T. and Bronstein, A.M. 2010. What does autonomic arousal tell us about locomotor learning? Neuroscience. 170 (1), pp. 42-53. https://doi.org/10.1016/j.neuroscience.2010.06.079

What the "broken escalator" phenomenon teaches us about balance.
Bronstein, A.M., Bunday, K.L. and Reynolds, R. 2009. What the "broken escalator" phenomenon teaches us about balance. Annals of the New York Academy of Sciences. 1164 (1), pp. 82-88. https://doi.org/10.1111/j.1749-6632.2009.03870.x

Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy.
Bunday, K.L. and Bronstein, A.M. 2009. Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy. Journal of Neurophysiology. 102 (6), pp. 3119-3128. https://doi.org/10.1152/jn.00304.2009

Visuo-vestibular influences on the moving platform locomotor aftereffect.
Bunday, K.L. and Bronstein, A.M. 2008. Visuo-vestibular influences on the moving platform locomotor aftereffect. Journal of Neurophysiology. 99 (3), pp. 1354-1365. https://doi.org/10.1152/jn.01214.2007

Permalink - https://westminsterresearch.westminster.ac.uk/item/v92q8/the-effect-of-trial-number-on-the-emergence-of-the-broken-escalator-locomotor-aftereffect


Share this

Usage statistics

54 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.