Planetary habitability: lessons learned from terrestrial analogues

Preston, L.J. and Dartnell, L. 2014. Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology. 13 (1). https://doi.org/10.1017/S1473550413000396

TitlePlanetary habitability: lessons learned from terrestrial analogues
TypeJournal article
AuthorsPreston, L.J. and Dartnell, L.
Abstract

Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which they emulate their intended target locale. We also outline key issues associated with the existing documentation of analogue research and the constraints this has on the efficiency of discoveries in this field. This review thus highlights the need for a global open access database for planetary analogues

JournalInternational Journal of Astrobiology
Journal citation13 (1)
ISSN1473-5504
Year2014
PublisherCambridge University Press
Digital Object Identifier (DOI)https://doi.org/10.1017/S1473550413000396
Publication dates
Published03 Jan 2014

Related outputs

Marine Science Can Contribute to the Search for Extra-Terrestrial Life
Aguzzi, Jacopo, Cuadros, Javier, Dartnell, Lewis, Costa, Corrado, Violino, Simona, Canfora, Loredana, Danovaro, Roberto, Robinson, Nathan Jack, Giovannelli, Donato, Flögel, Sascha, Stefanni, Sergio, Chatzievangelou, Damianos, Marini, Simone, Picardi, Giacomo and Foing, Bernard 2024. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life. 14 (6) 676. https://doi.org/10.3390/life14060676

Research Trends and Future Perspectives in Marine Biomimicking Robotics
Aguzzi, J., Costa, C., Calisti, Marcello, Funari, Valerio, Stefanni, S., Danovaro, Roberto, Gomes, Helena I., Vecchi, Fabrizio, Dartnell, Lewis R., Weiss, Peter, Nowak, Kathrin, Chatzievangelou, D. and Marini, S. 2021. Research Trends and Future Perspectives in Marine Biomimicking Robotics. Sensors. 21 (11), p. e3778. https://doi.org/10.3390/s21113778

Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth?
Dartnell, L. and Kish, K. 2021. Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth? Sustainable Production and Consumption. 27, pp. 2165-2177. https://doi.org/10.1016/j.spc.2021.05.018

Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars
Preston, L.J., Barcenilla, R., Dartnell, L., Kucukkilic-Stephens, E. and Olsson-Francis, K. 2019. Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars. Astrobiology. 20 (1), pp. 15-25. https://doi.org/10.1089/ast.2019.2106

Origins: How The Earth Made Us
Dartnell, L.R. 2019. Origins: How The Earth Made Us. Bodley Head.

The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions
Kereszturi, A., Kanuchova, Z., Dartnell, L. and Hauber, E. 2018. The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions. in: Mehler, N. (ed.) Research Advances in Astronomy Nova Science Publishers. pp. 49-88

Society, Worldview and Outreach
Capova, K.A., Dartnell, L., Dunér, D., Melin, A. and Mitrikeski, P.T. 2018. Society, Worldview and Outreach. in: Capova, K.A., Persson, E., Milligan, T. and Dunér, D. (ed.) Astrobiology and Society in Europe Today Springer. pp. 19-24

Transitory Microbial Habitat in the Hyperarid Atacama Desert
Schulze-Makuch, D., Wagner, D., Kounaves, S.P., Mangelsdorf, K., Devine, K.G., de Vera, J-P., Schmitt-Kopplin, P., Grossart, H-P., Parro, V., Kaupenjohann, M., Galy, A., Schneider, B., Airo, A., Frösler, J., Davila, A.F., Arens, F.L., Cáceres, L., Cornejo, F.S., Carrizo, D., Dartnell, L.R., DiRuggiero, J., Flury, M., Ganzert, L., Gessner, M.O., Grathwohl, P., Guan, L., Heinz, J., Hess, M., Keppler, F., Maus, D., McKay, C.P., Meckenstock, R.U., Montgomery, W., Oberlin, E.A., Probst, A.J., Sáenz, J.S., Sattler, T., Schirmack, J., Sephton, M.A., Schloter, M., Uhl, J., Valenzuela, B., Vestergaard, G., Wörmer, L. and Zamorano, P. 2018. Transitory Microbial Habitat in the Hyperarid Atacama Desert. Proceedings of the National Academy of Sciences. 115 (11), pp. 2670-2675. https://doi.org/10.1073/pnas.1714341115

(Un)welcome Visitors: Why Aliens Might Visit Us
Dartnell, L.R. 2016. (Un)welcome Visitors: Why Aliens Might Visit Us. in: Al-Khalili, J. (ed.) Aliens: Science Asks: Is There Anyone Out There? Profile Books. pp. 25-34

The Astrobiology Primer v2.0
Domagal-Goldman, S.D., Wright, K.E., Adamala, K., de la Rubia Leigh, A., Bond, J., Dartnell, L.R., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino-Lima, I.G., Kelsi, S., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I. and Wong, T. 2016. The Astrobiology Primer v2.0. Astrobiology. 16 (8), pp. 561-653. https://doi.org/10.1089/ast.2015.1460

Ionization of the Venusian atmosphere from solar and galactic cosmic rays
Nordheim, T.A., Dartnell, L., Desorgher, L., Coates, A.J. and Jones, G.H. 2015. Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus. 245, pp. 80-86. https://doi.org/10.1016/j.icarus.2014.09.032

Constraints on a potential aerial biosphere on Venus: I. Cosmic rays
Dartnell, L., Nordheim, T.A., Patel, M., Mason, J.P., Coates, A.J. and Jones, G.H. 2015. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus. 257, pp. 396-405. https://doi.org/10.1016/j.icarus.2015.05.006

Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance
Musilova, M., Wright, G., Ward, J.M. and Dartnell, L.R. 2015. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. Astrobiology. 15 (12), pp. 1076-1090. https://doi.org/10.1089/ast.2014.1278

Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars
Dartnell, L. and Patel, M.R. 2014. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. International Journal of Astrobiology. 13 (2), pp. 112-123. https://doi.org/10.1017/S1473550413000335

An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J.R.G. and Lane, N. 2014. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution. 79 (5-6), pp. 213-227. https://doi.org/10.1007/s00239-014-9658-4

Fluorescence Characterization of Clinically-Important Bacteria
Dartnell, L.R., Roberts, T.A., Moore, G., Ward, J.M. and Muller, J-P. 2013. Fluorescence Characterization of Clinically-Important Bacteria. PLoS ONE. 8 (9) e75270. https://doi.org/10.1371/journal.pone.0075270

Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing
Zhang, D., Muller, J.-P., Lavender, S., Walton, D. and Dartnell, L. 2012. Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXIX-B8, pp. 555-559. https://doi.org/10.5194/isprsarchives-XXXIX-B8-555-2012

Martian sub-surface ionising radiation: biosignatures and geology
Dartnell, L., Desorgher, L., Ward, J.M. and Coates, A.J. 2007. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences. 4, pp. 545-558.

Permalink - https://westminsterresearch.westminster.ac.uk/item/qw6yw/planetary-habitability-lessons-learned-from-terrestrial-analogues


Share this

Usage statistics

125 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.