Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars

Preston, L.J., Barcenilla, R., Dartnell, L., Kucukkilic-Stephens, E. and Olsson-Francis, K. 2019. Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars. Astrobiology. 20 (1), pp. 15-25. https://doi.org/10.1089/ast.2019.2106

TitleInfrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars
TypeJournal article
AuthorsPreston, L.J.
Barcenilla, R.
Dartnell, L.
Kucukkilic-Stephens, E.
Olsson-Francis, K.
Abstract

The detection of potential biosignatures with mineral matrices is part of a multifaceted approach in the search for life on other planetary bodies. The 2020 ExoMars Rosalind Franklin rover includes within its payload three IR spectrometers in the form of ISEM (Infrared Spectrometer for ExoMars), MicrOmega, and Ma-MISS (Mars Multispectral Imager for Subsurface Studies). The use of this technique in the detection and characterization of biosignatures is of great value. Organic materials are often co-deposited in terrestrial evaporites and as such have been proposed as relevant analogs in the search for life on Mars. This study focuses on Ca-sulfates collected from the hypersaline Tírez Lake in Spain. Mid infrared and visible near infrared analysis of soils, salt crusts, and crystals with green and red layering indicative of microbial colonization of the samples was acquired from across the lake and identified the main mineral to be gypsum with inputs of carbonate and silica. Organic functional groups that could be attributed to amides and carboxylic acids were identified as well as chlorophyll; however, due to the strong mineralogical absorptions observed, these were hard to unambiguously discern. Taxonomical assignment demonstrated that the archaeal community within the samples was dominated by the halophilic extremophile Halobacteriaceae while the bacterial community was dominated by the class Nocardiaceae. The results of this research highlight that sulfates on Mars are a mixed blessing, acting as an effective host for organic matter preservation but also a material that masks the presence of organic functional groups when analyzed with spectroscopic tools similar to those due to fly on the 2020 ExoMars rover. A suite of complementary analytical techniques therefore should be used to support the spectral identification of any candidate extraterrestrial biosignatures.

JournalAstrobiology
Journal citation20 (1), pp. 15-25
ISSN1531-1074
Year2019
PublisherMary Ann Liebert
Publisher's version
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1089/ast.2019.2106
Publication dates
Published in printJan 2020
Published online08 Oct 2019

Related outputs

Research Trends and Future Perspectives in Marine Biomimicking Robotics
Aguzzi, J., Costa, C., Calisti, Marcello, Funari, Valerio, Stefanni, S., Danovaro, Roberto, Gomes, Helena I., Vecchi, Fabrizio, Dartnell, Lewis R., Weiss, Peter, Nowak, Kathrin, Chatzievangelou, D. and Marini, S. 2021. Research Trends and Future Perspectives in Marine Biomimicking Robotics. Sensors. 21 (11), p. e3778. https://doi.org/10.3390/s21113778

Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth?
Dartnell, L. and Kish, K. 2021. Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth? Sustainable Production and Consumption. 27, pp. 2165-2177. https://doi.org/10.1016/j.spc.2021.05.018

Origins: How The Earth Made Us
Dartnell, L.R. 2019. Origins: How The Earth Made Us. Bodley Head.

The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions
Kereszturi, A., Kanuchova, Z., Dartnell, L. and Hauber, E. 2018. The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions. in: Mehler, N. (ed.) Research Advances in Astronomy Nova Science Publishers. pp. 49-88

Society, Worldview and Outreach
Capova, K.A., Dartnell, L., Dunér, D., Melin, A. and Mitrikeski, P.T. 2018. Society, Worldview and Outreach. in: Capova, K.A., Persson, E., Milligan, T. and Dunér, D. (ed.) Astrobiology and Society in Europe Today Springer. pp. 19-24

Transitory Microbial Habitat in the Hyperarid Atacama Desert
Schulze-Makuch, D., Wagner, D., Kounaves, S.P., Mangelsdorf, K., Devine, K.G., de Vera, J-P., Schmitt-Kopplin, P., Grossart, H-P., Parro, V., Kaupenjohann, M., Galy, A., Schneider, B., Airo, A., Frösler, J., Davila, A.F., Arens, F.L., Cáceres, L., Cornejo, F.S., Carrizo, D., Dartnell, L.R., DiRuggiero, J., Flury, M., Ganzert, L., Gessner, M.O., Grathwohl, P., Guan, L., Heinz, J., Hess, M., Keppler, F., Maus, D., McKay, C.P., Meckenstock, R.U., Montgomery, W., Oberlin, E.A., Probst, A.J., Sáenz, J.S., Sattler, T., Schirmack, J., Sephton, M.A., Schloter, M., Uhl, J., Valenzuela, B., Vestergaard, G., Wörmer, L. and Zamorano, P. 2018. Transitory Microbial Habitat in the Hyperarid Atacama Desert. Proceedings of the National Academy of Sciences. 115 (11), pp. 2670-2675. https://doi.org/10.1073/pnas.1714341115

(Un)welcome Visitors: Why Aliens Might Visit Us
Dartnell, L.R. 2016. (Un)welcome Visitors: Why Aliens Might Visit Us. in: Al-Khalili, J. (ed.) Aliens: Science Asks: Is There Anyone Out There? Profile Books. pp. 25-34

The Astrobiology Primer v2.0
Domagal-Goldman, S.D., Wright, K.E., Adamala, K., de la Rubia Leigh, A., Bond, J., Dartnell, L.R., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino-Lima, I.G., Kelsi, S., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I. and Wong, T. 2016. The Astrobiology Primer v2.0. Astrobiology. 16 (8), pp. 561-653. https://doi.org/10.1089/ast.2015.1460

Ionization of the Venusian atmosphere from solar and galactic cosmic rays
Nordheim, T.A., Dartnell, L., Desorgher, L., Coates, A.J. and Jones, G.H. 2015. Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus. 245, pp. 80-86. https://doi.org/10.1016/j.icarus.2014.09.032

Constraints on a potential aerial biosphere on Venus: I. Cosmic rays
Dartnell, L., Nordheim, T.A., Patel, M., Mason, J.P., Coates, A.J. and Jones, G.H. 2015. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus. 257, pp. 396-405. https://doi.org/10.1016/j.icarus.2015.05.006

Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance
Musilova, M., Wright, G., Ward, J.M. and Dartnell, L.R. 2015. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. Astrobiology. 15 (12), pp. 1076-1090. https://doi.org/10.1089/ast.2014.1278

Planetary habitability: lessons learned from terrestrial analogues
Preston, L.J. and Dartnell, L. 2014. Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology. 13 (1). https://doi.org/10.1017/S1473550413000396

Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars
Dartnell, L. and Patel, M.R. 2014. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. International Journal of Astrobiology. 13 (2), pp. 112-123. https://doi.org/10.1017/S1473550413000335

An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J.R.G. and Lane, N. 2014. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution. 79 (5-6), pp. 213-227. https://doi.org/10.1007/s00239-014-9658-4

Fluorescence Characterization of Clinically-Important Bacteria
Dartnell, L.R., Roberts, T.A., Moore, G., Ward, J.M. and Muller, J-P. 2013. Fluorescence Characterization of Clinically-Important Bacteria. PLoS ONE. 8 (9) e75270. https://doi.org/10.1371/journal.pone.0075270

Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing
Zhang, D., Muller, J.-P., Lavender, S., Walton, D. and Dartnell, L. 2012. Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXIX-B8, pp. 555-559. https://doi.org/10.5194/isprsarchives-XXXIX-B8-555-2012

Martian sub-surface ionising radiation: biosignatures and geology
Dartnell, L., Desorgher, L., Ward, J.M. and Coates, A.J. 2007. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences. 4, pp. 545-558.

Permalink - https://westminsterresearch.westminster.ac.uk/item/v0137/infrared-spectroscopic-detection-of-biosignatures-at-lake-t-rez-spain-implications-for-mars


Share this

Usage statistics

92 total views
61 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.