Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing

Zhang, D., Muller, J.-P., Lavender, S., Walton, D. and Dartnell, L. 2012. Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXIX-B8, pp. 555-559. https://doi.org/10.5194/isprsarchives-XXXIX-B8-555-2012

TitleFluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing
TypeJournal article
AuthorsZhang, D., Muller, J.-P., Lavender, S., Walton, D. and Dartnell, L.
Abstract

Fluorescence analysis, being a non-invasive technique, has become one of the most powerful and widely used techniques for microbiologists and chemists to study various types of sample from photosynthetic microbes to hydrocarbons. The work reported here focuses on experimental results of fluorescent features of photosynthetic microbial species (cyanobacteria) and also five different crude oil samples. The cyanobacteria samples were collected from the Baltic Sea at the end of July 2011 and were associated with cyanobacterial bloom events, and the crude oil samples were from various oil spill events. The aim of the study was to find fluorescent biosignatures of cyanobacteria (initially a species specific to the Baltic Sea) and the fingerprints of crude oil; oil spills can be difficult to differentiate from biogenic films when using Synthetic Aperture Radar (SAR) or sunglint contaminated optical imagery. All samples were measured using a Perkin Elmer LS55 Luminescence spectrometer over a broad range of excitation and emission wavelength from ultraviolet (UV) to near infrared (NIR). The results are presented in Excitation Emission Matrices (EEMs) that exhibit the fluorescent features of each sample. In the EEM of the seawater sample containing cyanobacteria, there is an intense emission peak from tryptophan with fluorescent excitation and emission peaks at 285 and 345 nm respectively. In addition, fluorescent signatures of phycocyanin and chlorophyll-a are present with excitation and emission centre wavelengths at 555 nm, 645 nm and 390 nm, 685 nm, respectively. Additionally, the fluorescence signatures of Polycyclic Aromatic Hydrocarbons (PAHs) are present in the EEMs of crude oil samples with excitation and emission peaks at 285 nm and 425 nm. This study underpins further research on how to distinguish cyanobacteria species by their fluorescence signatures and the potential role that PAHs play in detection of cyanobacteria fluorescence features.

KeywordsFluorescence
Excitation-Emission Matrix
Cyanobacteria
Crude oil
PAHs
JournalInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Journal citationXXXIX-B8, pp. 555-559
ISSN1682-1750
Year2012
PublisherCopernicus Publications
Publisher's version
Digital Object Identifier (DOI)https://doi.org/10.5194/isprsarchives-XXXIX-B8-555-2012
LicenseCC BY 3.0

Related outputs

Marine Science Can Contribute to the Search for Extra-Terrestrial Life
Aguzzi, Jacopo, Cuadros, Javier, Dartnell, Lewis, Costa, Corrado, Violino, Simona, Canfora, Loredana, Danovaro, Roberto, Robinson, Nathan Jack, Giovannelli, Donato, Flögel, Sascha, Stefanni, Sergio, Chatzievangelou, Damianos, Marini, Simone, Picardi, Giacomo and Foing, Bernard 2024. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life. 14 (6) 676. https://doi.org/10.3390/life14060676

Research Trends and Future Perspectives in Marine Biomimicking Robotics
Aguzzi, J., Costa, C., Calisti, Marcello, Funari, Valerio, Stefanni, S., Danovaro, Roberto, Gomes, Helena I., Vecchi, Fabrizio, Dartnell, Lewis R., Weiss, Peter, Nowak, Kathrin, Chatzievangelou, D. and Marini, S. 2021. Research Trends and Future Perspectives in Marine Biomimicking Robotics. Sensors. 21 (11), p. e3778. https://doi.org/10.3390/s21113778

Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth?
Dartnell, L. and Kish, K. 2021. Do responses to the COVID-19 pandemic anticipate a long-lasting shift towards peer-to-peer production or degrowth? Sustainable Production and Consumption. 27, pp. 2165-2177. https://doi.org/10.1016/j.spc.2021.05.018

Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars
Preston, L.J., Barcenilla, R., Dartnell, L., Kucukkilic-Stephens, E. and Olsson-Francis, K. 2019. Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars. Astrobiology. 20 (1), pp. 15-25. https://doi.org/10.1089/ast.2019.2106

Origins: How The Earth Made Us
Dartnell, L.R. 2019. Origins: How The Earth Made Us. Bodley Head.

The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions
Kereszturi, A., Kanuchova, Z., Dartnell, L. and Hauber, E. 2018. The paleo-environment reconstruction on Mars: focus points for the next astrobiology missions. in: Mehler, N. (ed.) Research Advances in Astronomy Nova Science Publishers. pp. 49-88

Society, Worldview and Outreach
Capova, K.A., Dartnell, L., Dunér, D., Melin, A. and Mitrikeski, P.T. 2018. Society, Worldview and Outreach. in: Capova, K.A., Persson, E., Milligan, T. and Dunér, D. (ed.) Astrobiology and Society in Europe Today Springer. pp. 19-24

Transitory Microbial Habitat in the Hyperarid Atacama Desert
Schulze-Makuch, D., Wagner, D., Kounaves, S.P., Mangelsdorf, K., Devine, K.G., de Vera, J-P., Schmitt-Kopplin, P., Grossart, H-P., Parro, V., Kaupenjohann, M., Galy, A., Schneider, B., Airo, A., Frösler, J., Davila, A.F., Arens, F.L., Cáceres, L., Cornejo, F.S., Carrizo, D., Dartnell, L.R., DiRuggiero, J., Flury, M., Ganzert, L., Gessner, M.O., Grathwohl, P., Guan, L., Heinz, J., Hess, M., Keppler, F., Maus, D., McKay, C.P., Meckenstock, R.U., Montgomery, W., Oberlin, E.A., Probst, A.J., Sáenz, J.S., Sattler, T., Schirmack, J., Sephton, M.A., Schloter, M., Uhl, J., Valenzuela, B., Vestergaard, G., Wörmer, L. and Zamorano, P. 2018. Transitory Microbial Habitat in the Hyperarid Atacama Desert. Proceedings of the National Academy of Sciences. 115 (11), pp. 2670-2675. https://doi.org/10.1073/pnas.1714341115

(Un)welcome Visitors: Why Aliens Might Visit Us
Dartnell, L.R. 2016. (Un)welcome Visitors: Why Aliens Might Visit Us. in: Al-Khalili, J. (ed.) Aliens: Science Asks: Is There Anyone Out There? Profile Books. pp. 25-34

The Astrobiology Primer v2.0
Domagal-Goldman, S.D., Wright, K.E., Adamala, K., de la Rubia Leigh, A., Bond, J., Dartnell, L.R., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino-Lima, I.G., Kelsi, S., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I. and Wong, T. 2016. The Astrobiology Primer v2.0. Astrobiology. 16 (8), pp. 561-653. https://doi.org/10.1089/ast.2015.1460

Ionization of the Venusian atmosphere from solar and galactic cosmic rays
Nordheim, T.A., Dartnell, L., Desorgher, L., Coates, A.J. and Jones, G.H. 2015. Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus. 245, pp. 80-86. https://doi.org/10.1016/j.icarus.2014.09.032

Constraints on a potential aerial biosphere on Venus: I. Cosmic rays
Dartnell, L., Nordheim, T.A., Patel, M., Mason, J.P., Coates, A.J. and Jones, G.H. 2015. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus. 257, pp. 396-405. https://doi.org/10.1016/j.icarus.2015.05.006

Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance
Musilova, M., Wright, G., Ward, J.M. and Dartnell, L.R. 2015. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. Astrobiology. 15 (12), pp. 1076-1090. https://doi.org/10.1089/ast.2014.1278

Planetary habitability: lessons learned from terrestrial analogues
Preston, L.J. and Dartnell, L. 2014. Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology. 13 (1). https://doi.org/10.1017/S1473550413000396

Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars
Dartnell, L. and Patel, M.R. 2014. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. International Journal of Astrobiology. 13 (2), pp. 112-123. https://doi.org/10.1017/S1473550413000335

An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J.R.G. and Lane, N. 2014. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution. 79 (5-6), pp. 213-227. https://doi.org/10.1007/s00239-014-9658-4

Fluorescence Characterization of Clinically-Important Bacteria
Dartnell, L.R., Roberts, T.A., Moore, G., Ward, J.M. and Muller, J-P. 2013. Fluorescence Characterization of Clinically-Important Bacteria. PLoS ONE. 8 (9) e75270. https://doi.org/10.1371/journal.pone.0075270

Martian sub-surface ionising radiation: biosignatures and geology
Dartnell, L., Desorgher, L., Ward, J.M. and Coates, A.J. 2007. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences. 4, pp. 545-558.

Permalink - https://westminsterresearch.westminster.ac.uk/item/qw6z2/fluorescent-analysis-of-photosynthetic-microbes-and-polycyclic-aromatic-hydrocarbons-linked-to-optical-remote-sensing


Share this

Usage statistics

144 total views
79 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.