Dissociable effects of age and Parkinson’s disease on instruction-based learning

Parkin, Beth L, Daws, Richard E, Das-Neves, Ines, Violante, Ines R, Soreq, Eyal, Faisal, A Aldo, Sandrone, Stefano, Lao-Kaim, N., Martin-Bastida, Antonio, Roussakis, A., Piccini, Paola and Hampshire, A. 2021. Dissociable effects of age and Parkinson’s disease on instruction-based learning. Brain Communications. 3 (3) fcab175. https://doi.org/10.1093/braincomms/fcab175

TitleDissociable effects of age and Parkinson’s disease on instruction-based learning
TypeJournal article
AuthorsParkin, Beth L, Daws, Richard E, Das-Neves, Ines, Violante, Ines R, Soreq, Eyal, Faisal, A Aldo, Sandrone, Stefano, Lao-Kaim, N., Martin-Bastida, Antonio, Roussakis, A., Piccini, Paola and Hampshire, A.
AbstractThe cognitive deficits associated with Parkinson’s disease vary across individuals and change across time, with implications for prognosis and treatment. Key outstanding challenges are to define the distinct behavioural characteristics of this disorder and develop diagnostic paradigms that can assess these sensitively in individuals. In a previous study, we measured different aspects of attentional control in Parkinson’s disease using an established fMRI switching paradigm. We observed no deficits for the aspects of attention the task was designed to examine; instead those with Parkinson’s disease learnt the operational requirements of the task more slowly. We hypothesized that a subset of people with early-to-mid stage Parkinson’s might be impaired when encoding rules for performing new tasks. Here, we directly test this hypothesis and investigate whether deficits in instruction-based learning represent a characteristic of Parkinson’s Disease. Seventeen participants with Parkinson’s disease (8 male; mean age: 61.2 years), 18 older adults (8 male; mean age: 61.3 years) and 20 younger adults (10 males; mean age: 26.7 years) undertook a simple instruction-based learning paradigm in the MRI scanner. They sorted sequences of coloured shapes according to binary discrimination rules that were updated at two-minute intervals. Unlike common reinforcement learning tasks, the rules were unambiguous, being explicitly presented; consequently, there was no requirement to monitor feedback or estimate contingencies. Despite its simplicity, a third of the Parkinson’s group, but only one older adult, showed marked increases in errors, 4 SD greater than the worst performing young adult. The pattern of errors was consistent, reflecting a tendency to misbind discrimination rules. The misbinding behaviour was coupled with reduced frontal, parietal and anterior caudate activity when rules were being encoded, but not when attention was initially oriented to the instruction slides or when discrimination trials were performed. Concomitantly, Magnetic Resonance Spectroscopy showed reduced gamma-Aminobutyric acid levels within the mid-dorsolateral prefrontal cortices of individuals who made misbinding errors. These results demonstrate, for the first time, that a subset of early-to-mid stage people with Parkinson’s show substantial deficits when binding new task rules in working memory. Given the ubiquity of instruction-based learning, these deficits are likely to impede daily living. They will also confound clinical assessment of other cognitive processes. Future work should determine the value of instruction-based learning as a sensitive early marker of cognitive decline and as a measure of responsiveness to therapy in Parkinson's disease.
Article numberfcab175
JournalBrain Communications
Journal citation3 (3)
ISSN2632-1297
Year2021
PublisherOxford University Press
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1093/braincomms/fcab175
PubMed ID34485905
Publication dates
Published online28 Aug 2021
Published in print01 Jul 2021
ProjectBB/S008314/1
FunderInstitute for Translational Medicine and Therapeutics
Imperial National Institute of Health Research Biomedical Research Centre
Dementia Research Institute
Marie Curie Career Integration Grants awarded to Adam Hampshire
Biotechnology and Biological Sciences Research Council
Licensehttp://creativecommons.org/licenses/by/4.0/

Related outputs

Testing hypotheses about the harm that capitalism causes to the mind and brain: a theoretical framework for neuroscience research
Kokorikou, D., Sarigiannidis, I., Fiore, V.G., Parkin, B., Hopkins, A., El-Deredy, W., Dilley, L. and Moutoussis, M. 2023. Testing hypotheses about the harm that capitalism causes to the mind and brain: a theoretical framework for neuroscience research. Frontiers in Sociology. 8 1030115. https://doi.org/10.3389/fsoc.2023.1030115

Menu design approaches to promote sustainable vegetarian food choices when dining out
Parkin, B. and Attwood, S. 2022. Menu design approaches to promote sustainable vegetarian food choices when dining out. Journal of Environmental Psychology. 79 101721. https://doi.org/10.1016/j.jenvp.2021.101721

Transcranial Magnetic Stimulation and the Understanding of Behavior
Pitcher, David, Parkin, B. and Walsh, Vincent 2021. Transcranial Magnetic Stimulation and the Understanding of Behavior. Annual Review of Psychology. 72, pp. 97-121. https://doi.org/10.1146/annurev-psych-081120-013144

Menu engineering to encourage sustainable food choices when dining out: An online trial of priced-based decoys
Attwood, S., Chesworth, S. and Parkin, B. 2020. Menu engineering to encourage sustainable food choices when dining out: An online trial of priced-based decoys. Appetite. 149 104601. https://doi.org/10.1016/j.appet.2020.104601

The physiological effects of Transcranial Electrical Stimulation do not apply to parameters commonly used in studies of Cognitive Neuromodulation
Parkin, B., Bhandari, M., Glen, J.C. and Walsh, V. 2019. The physiological effects of Transcranial Electrical Stimulation do not apply to parameters commonly used in studies of Cognitive Neuromodulation. Neuropsychologia. 128, pp. 332-339. https://doi.org/10.1016/j.neuropsychologia.2018.03.030

Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity
Samu, D., Campbell, K., Tsvetanov, K., Shafto, M., Cam-CAN Consortium, Tyler, L. and Parkin, B. 2017. Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity. Nature Communications . 8 14743. https://doi.org/10.1038/ncomms14743

Gunslingers, poker players, and chickens 3: Decision making under mental performance pressure in junior elite athletes
Parkin, B. and Walsh, V. 2017. Gunslingers, poker players, and chickens 3: Decision making under mental performance pressure in junior elite athletes. in: Wilson, M., Walsh, V. and Parkin, B. (ed.) Sport and the Brain: The Science of Preparing, Enduring and Winning, Part B Elsevier. pp. 339-359

Gunslingers, poker players, and chickens 2: Decision-making under physical performance pressure in subelite athletes.
Parkin, B. and Walsh, V. 2017. Gunslingers, poker players, and chickens 2: Decision-making under physical performance pressure in subelite athletes. in: Wilson, M., Walsh, V. and Parkin, B. (ed.) Sport and the Brain: The Science of Preparing, Enduring and Winning, Part B Elsevier. pp. 317-338

Gunslingers, poker players, and chickens 1: Decision making under physical performance pressure in elite athletes
Parkin, B., Warriner, K. and Walsh, V. 2017. Gunslingers, poker players, and chickens 1: Decision making under physical performance pressure in elite athletes. in: Wilson, M., Walsh, V. and Parkin, B. (ed.) Sport and the Brain: The Science of Preparing, Enduring and Winning, Part B Elsevier. pp. 291-316

Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits
Wolpe, N., Ingram, J., Tsvetanov, K., Geerligs, L., Kievit, R., Henson, R., Wolpert, D., Cam-CAN Consortium, Rowe, J. and Parkin, B. 2016. Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nature Communications . 7 13034. https://doi.org/10.1038/ncomms13034

Network mechanisms of intentional learning
Hampshire, A., Hellyer, P., Parkin, B., Hiebert, N., MacDonald, P., Owen, A.M., Leech, R. and Rowe, J. 2016. Network mechanisms of intentional learning. NeuroImage. 127, pp. 123-134. https://doi.org/10.1016/j.neuroimage.2015.11.060

Dynamic Network Mechanisms of Relational Integration
Parkin, B., Hellyer, P., Leech, R. and Hampshire, A. 2015. Dynamic Network Mechanisms of Relational Integration. Journal of Neuroscience. 35 (20), pp. 7660-7673. https://doi.org/10.1523/JNEUROSCI.4956-14.2015

Non-Invasive Human Brain 
Stimulation in Cognitive Neuroscience: A Primer
Parkin, B., Leech, R. and Walsh, V. 2015. Non-Invasive Human Brain 
Stimulation in Cognitive Neuroscience: A Primer. Neuron. 87 (5), pp. 932-945. https://doi.org/10.1016/j.neuron.2015.07.032

Brief response to Ashton and colleagues regarding Fractionating Human Intelligence
Hampshire, A., Parkin, B., Highfield, R. and Owen, A.M. 2014. Brief response to Ashton and colleagues regarding Fractionating Human Intelligence. Personality and Individual Differences. 60, pp. 16-17. https://doi.org/10.1016/j.paid.2013.11.013

Assessing residual reasoning ability in overtly non-communicative patients using fMRI
Hampshire, A., Parkin, B., Cusack, R., Fernández Espejo, D., Allanson, J., Kamau, E., Pickard, J.D. and Owen, A.M. 2013. Assessing residual reasoning ability in overtly non-communicative patients using fMRI. Neuroimage: Clinical. 2, pp. 174-183. https://doi.org/10.1016/j.nicl.2012.11.008

Fractionating Human Intelligence
Hampshire, A., Parkin, B., Highfield, R. and Owen, A.M. 2012. Fractionating Human Intelligence. Neuron. 76 (6), p. 1225–1237. https://doi.org/10.1016/j.neuron.2012.06.022

Permalink - https://westminsterresearch.westminster.ac.uk/item/v7990/dissociable-effects-of-age-and-parkinson-s-disease-on-instruction-based-learning


Share this

Usage statistics

119 total views
110 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.