Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation. In previous research advances have been proposed in the flight plan capabilities by offering semantically much richer constructs than those present in most current UAS autopilots. The introduced flight plan is organized as a set of stages, each one corresponding to a different flight phase. Each stage contains a structured collection of legs inspired by current practices in Area Navigation (RNAV). However, the most critical parts of any flight, the depart and approach operations in an integrated airspace remain mostly unexplored. This paper introduces an assessment of both operations for UAS operating in VFR and IFR modes. Problems and potential solutions are proposed, as well as an automating strategy that should greatly reduce pilot workload. Although the |