2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions

Hu, Y., Bonmati Coll, E., Gibson, E., Hipwell, J.H., Hawkes, D.J., Bandula, S., Pereira, S.P. and Barratt, D.C. 2016. 2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Athens, Greece 17 - 21 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-46720-7_60

Title2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions
AuthorsHu, Y., Bonmati Coll, E., Gibson, E., Hipwell, J.H., Hawkes, D.J., Bandula, S., Pereira, S.P. and Barratt, D.C.
TypeConference paper
Abstract

We describe a fast analytical method to estimate landmark-based 2D-3D registration accuracy to aid the planning of pancreatobiliary interventions in which ERCP images are combined with information from diagnostic 3D MR or CT images. The method analytically estimates a target registration error (TRE), accounting for errors in the manual selection of both 2D- and 3D landmarks, that agrees with Monte Carlo simulation to within 4.5 ± 3.6 % (mean ± SD). We also show how to analytically estimate a planning uncertainty incorporating uncertainty in patient positioning, and utilise it to support ERCP-guided procedure planning by selecting the optimal patient position and X-ray C-arm orientation that minimises the expected TRE. Simulated- and derived planning uncertainties agreed to within 17.9 ± 9.7 % when the root-mean-square error was less than 50°. We demonstrate the feasibility of this approach on clinical data from two patients.

Year2016
ConferenceMedical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016
PublisherSpringer
Publication dates
Published online02 Oct 2016
JournalLecture Notes in Computer Science
Journal citation9900, pp. 516-524
ISSN0302-9743
ISBN9783319467191
9783319467207
Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-319-46720-7_60

Related outputs

Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification
Grimwood, A., McNair, H., Hu, Y., Bonmati Coll, E., Barratt, D. and Harris, E.J. 2020. Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference. Lima, Peru 04 - 08 Oct 2020 Springer. https://doi.org/10.1007/978-3-030-59716-0_52

Novel Brain Complexity Measures Based on Information Theory
Bonmati Coll, E., Bardera, A., Feixas, M. and Boada, I. 2018. Novel Brain Complexity Measures Based on Information Theory. Entropy. 20 (7) 491. https://doi.org/10.3390/e20070491

Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures
Bonmati Coll, E., Hu, Y., Gibson, E., Uribarri, L., Keane, G., Gurusami, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures. International Journal of Computer Assisted Radiology and Surgery. 13, pp. 875-883. https://doi.org/10.1007/s11548-018-1762-2

Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks. IEEE Transactions on Medical Imaging. 37 (8), pp. 1822-1834. https://doi.org/10.1109/tmi.2018.2806309

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network
Bonmati Coll, E., Hu, Y., Sindhwani, N., Dietz, H.P., D'hooge, J., Barratt, D., Deprest, J. and Vercauteren, T. 2018. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. Journal of Medical Imaging. 5 (2) 021206. https://doi.org/10.1117/1.jmi.5.2.021206

Brain parcellation based on information theory
Bonmati Coll, E., Bardera, A. and Boada, I. 2017. Brain parcellation based on information theory. Computer Methods and Programs in Biomedicine. 151, pp. 203-212. https://doi.org/10.1016/j.cmpb.2017.07.012

Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2017. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Quebec City, QC, Canada 11 - 13 Sep 2017 Springer. https://doi.org/10.1007/978-3-319-66182-7_83

Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound
Bonmati Coll, E., Hu, Y., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2016. Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound. Computer-Assisted and Robotic Endoscopy. CARE 2016. Athens, Greece 17 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-54057-3_4

Measuring Complex Brain Networks Structure
Bonmati Ester, Bardera Anton, Boada Imma and Bonmati Coll, E. 2016. Measuring Complex Brain Networks Structure. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2016. https://doi.org/10.3389/conf.fninf.2016.20.00012

Hierarchical clustering based on the information bottleneck method using a control process
Bonmati Coll, E., Bardera, A., Boada, I., Feixas, M. and Sbert, M. 2015. Hierarchical clustering based on the information bottleneck method using a control process. Pattern Analysis and Applications (PAA). 18, pp. 619-637. https://doi.org/10.1007/s10044-015-0467-1

Permalink - https://westminsterresearch.westminster.ac.uk/item/vw9yy/2d-3d-registration-accuracy-estimation-for-optimised-planning-of-image-guided-pancreatobiliary-interventions


Share this

Usage statistics

14 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.