Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks

Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks. IEEE Transactions on Medical Imaging. 37 (8), pp. 1822-1834. https://doi.org/10.1109/tmi.2018.2806309

TitleAutomatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks
TypeJournal article
AuthorsGibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C.
Abstract

Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures.

JournalIEEE Transactions on Medical Imaging
Journal citation37 (8), pp. 1822-1834
ISSN0278-0062
Year2018
PublisherIEEE
Digital Object Identifier (DOI)https://doi.org/10.1109/tmi.2018.2806309
Web address (URL)http://www.scopus.com/inward/record.url?eid=2-s2.0-85042080742&partnerID=MN8TOARS
Publication dates
Published14 Feb 2018

Related outputs

Active learning using adaptable task-based prioritisation
Shaheer U. Saeed, João Ramalhinho, Mark Pinnock, Ziyi Shen, Yunguan Fu, Nina Montaña-Brown, Ester Bonmati, Dean C. Barratt, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson and Yipeng Hu 2024. Active learning using adaptable task-based prioritisation. Medical Image Analysis. 95 103181. https://doi.org/10.1016/j.media.2024.103181

Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
João Ramalhinho, Thomas Dowrick, Bonmati Coll, E. and Matthew J. Clarkson 2023. Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes. Journal of Open Research Software. 11 (1), p. 3. https://doi.org/10.5334/jors.422

Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks
Bonmati Coll, E., Hu, Y., Grimwood, A., Johnson, G.J., Goodchild, G., Keane, M.G., Gurusamy, K., Davidson, B., Clarkson, M.J., Pereira, S.P. and Barratt, D.C. 2022. Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks. IEEE Transactions on Medical Imaging. 41 (6), pp. 1311-1319. https://doi.org/10.1109/tmi.2021.3139023

Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification
Grimwood, A., McNair, H., Hu, Y., Bonmati Coll, E., Barratt, D. and Harris, E.J. 2020. Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference. Lima, Peru 04 - 08 Oct 2020 Springer. https://doi.org/10.1007/978-3-030-59716-0_52

Novel Brain Complexity Measures Based on Information Theory
Bonmati Coll, E., Bardera, A., Feixas, M. and Boada, I. 2018. Novel Brain Complexity Measures Based on Information Theory. Entropy. 20 (7) 491. https://doi.org/10.3390/e20070491

Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures
Bonmati Coll, E., Hu, Y., Gibson, E., Uribarri, L., Keane, G., Gurusami, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures. International Journal of Computer Assisted Radiology and Surgery. 13, pp. 875-883. https://doi.org/10.1007/s11548-018-1762-2

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network
Bonmati Coll, E., Hu, Y., Sindhwani, N., Dietz, H.P., D'hooge, J., Barratt, D., Deprest, J. and Vercauteren, T. 2018. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. Journal of Medical Imaging. 5 (2) 021206. https://doi.org/10.1117/1.jmi.5.2.021206

Brain parcellation based on information theory
Bonmati Coll, E., Bardera, A. and Boada, I. 2017. Brain parcellation based on information theory. Computer Methods and Programs in Biomedicine. 151, pp. 203-212. https://doi.org/10.1016/j.cmpb.2017.07.012

Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2017. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Quebec City, QC, Canada 11 - 13 Sep 2017 Springer. https://doi.org/10.1007/978-3-319-66182-7_83

2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions
Hu, Y., Bonmati Coll, E., Gibson, E., Hipwell, J.H., Hawkes, D.J., Bandula, S., Pereira, S.P. and Barratt, D.C. 2016. 2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Athens, Greece 17 - 21 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-46720-7_60

Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound
Bonmati Coll, E., Hu, Y., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2016. Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound. Computer-Assisted and Robotic Endoscopy. CARE 2016. Athens, Greece 17 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-54057-3_4

Measuring Complex Brain Networks Structure
Bonmati Ester, Bardera Anton, Boada Imma and Bonmati Coll, E. 2016. Measuring Complex Brain Networks Structure. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2016. https://doi.org/10.3389/conf.fninf.2016.20.00012

Hierarchical clustering based on the information bottleneck method using a control process
Bonmati Coll, E., Bardera, A., Boada, I., Feixas, M. and Sbert, M. 2015. Hierarchical clustering based on the information bottleneck method using a control process. Pattern Analysis and Applications (PAA). 18, pp. 619-637. https://doi.org/10.1007/s10044-015-0467-1

Permalink - https://westminsterresearch.westminster.ac.uk/item/vw9z2/automatic-multi-organ-segmentation-on-abdominal-ct-with-dense-v-networks


Share this

Usage statistics

84 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.