Guided ultrasound acquisition for nonrigid image registration using reinforcement learning

Shaheer U. Saeed, João Ramalhinho, Nina Montaña-Brown, Ester Bonmati, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson and Yipeng Hu 2025. Guided ultrasound acquisition for nonrigid image registration using reinforcement learning. Medical Image Analysis. 102 103555. https://doi.org/10.1016/j.media.2025.103555

TitleGuided ultrasound acquisition for nonrigid image registration using reinforcement learning
TypeJournal article
AuthorsShaheer U. Saeed, João Ramalhinho, Nina Montaña-Brown, Ester Bonmati, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson and Yipeng Hu
Abstract

We propose a guided registration method for spatially aligning a fixed preoperative image and untracked ultrasound image slices. We exploit the unique interactive and spatially heterogeneous nature of this application to develop a registration algorithm that interactively suggests and acquires ultrasound images at optimised locations (with respect to registration performance). Our framework is based on two trainable functions: (1) a deep hyper-network-based registration function, which is generalisable over varying location and deformation, and adaptable at test-time; (2) a reinforcement learning function for producing test-time estimates of image acquisition locations and adapted deformation regularisation (the latter is required due to varying acquisition locations). We evaluate our proposed method with real preoperative patient data, and simulated intraoperative data with variable field-of-view. In addition to simulation of intraoperative data, we simulate global alignment based on previous work for efficient training, and investigate probe-level guidance towards an improved deformable registration. The evaluation in a simulated environment shows statistically significant improvements in overall registration performance across a variety of metrics for our proposed method, compared to registration without acquisition guidance or adaptable deformation regularisation, and to commonly used classical iterative methods and learning-based registration. For the first time, efficacy of proactive image acquisition is demonstrated in a simulated surgical interventional registration, in contrast to most existing work addressing registration post-data-acquisition, one of the reasons we argue may have led to previously under-constrained nonrigid registration in such applications. Code: https://github.com/s-sd/rl_guided_registration.

Article number103555
JournalMedical Image Analysis
Journal citation102
ISSN1361-8423
1361-8415
Year2025
PublisherElsevier
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1016/j.media.2025.103555
Web address (URL)https://doi.org/10.1016/j.media.2025.103555
Publication dates
PublishedMay 2025
Published online29 Mar 2025

Related outputs

Enhanced CATBraTS for Brain Tumour Semantic Segmentation
El Badaoui, R., Bonmati Coll, E., Psarrou, A., Asaturyan, H. and Villarini, B. 2025. Enhanced CATBraTS for Brain Tumour Semantic Segmentation. Journal of Imaging. 11 (1), p. 8. https://doi.org/10.3390/jimaging11010008

Competing for Pixels: A Self-Play Algorithm for Weakly-Supervised Semantic Segmentation
Shaheer U. Saeed, Shiqi Huang, João Ramalhinho, Iani J.M.B. Gayo, Nina Montaña-Brown, Ester Bonmati, Stephen P. Pereira, Brian Davidson, Dean C. Barratt, Matthew J. Clarkson and Yipeng Hu 2025. Competing for Pixels: A Self-Play Algorithm for Weakly-Supervised Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 47 (2), pp. 825-839. https://doi.org/10.1109/TPAMI.2024.3474094

Active learning using adaptable task-based prioritisation
Shaheer U. Saeed, João Ramalhinho, Mark Pinnock, Ziyi Shen, Yunguan Fu, Nina Montaña-Brown, Ester Bonmati, Dean C. Barratt, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson and Yipeng Hu 2024. Active learning using adaptable task-based prioritisation. Medical Image Analysis. 95 103181. https://doi.org/10.1016/j.media.2024.103181

The distinct roles of reinforcement learning between pre-procedure and intra-procedure planning for prostate biopsy.
Gayo, I., Saeed, Shaheer U, Bonmati Coll, E., Barratt, Dean C, Clarkson, Matthew J and Hu, Yipeng 2024. The distinct roles of reinforcement learning between pre-procedure and intra-procedure planning for prostate biopsy. International Journal of Computer Assisted Radiology and Surgery. 19, p. 1003–1012. https://doi.org/10.1007/s11548-024-03084-4

Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
João Ramalhinho, Thomas Dowrick, Bonmati Coll, E. and Matthew J. Clarkson 2023. Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes. Journal of Open Research Software. 11 (1), p. 3. https://doi.org/10.5334/jors.422

Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks
Bonmati Coll, E., Hu, Y., Grimwood, A., Johnson, G.J., Goodchild, G., Keane, M.G., Gurusamy, K., Davidson, B., Clarkson, M.J., Pereira, S.P. and Barratt, D.C. 2022. Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks. IEEE Transactions on Medical Imaging. 41 (6), pp. 1311-1319. https://doi.org/10.1109/tmi.2021.3139023

Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification
Grimwood, A., McNair, H., Hu, Y., Bonmati Coll, E., Barratt, D. and Harris, E.J. 2020. Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference. Lima, Peru 04 - 08 Oct 2020 Springer. https://doi.org/10.1007/978-3-030-59716-0_52

Novel Brain Complexity Measures Based on Information Theory
Bonmati Coll, E., Bardera, A., Feixas, M. and Boada, I. 2018. Novel Brain Complexity Measures Based on Information Theory. Entropy. 20 (7) 491. https://doi.org/10.3390/e20070491

Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures
Bonmati Coll, E., Hu, Y., Gibson, E., Uribarri, L., Keane, G., Gurusami, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures. International Journal of Computer Assisted Radiology and Surgery. 13, pp. 875-883. https://doi.org/10.1007/s11548-018-1762-2

Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks. IEEE Transactions on Medical Imaging. 37 (8), pp. 1822-1834. https://doi.org/10.1109/tmi.2018.2806309

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network
Bonmati Coll, E., Hu, Y., Sindhwani, N., Dietz, H.P., D'hooge, J., Barratt, D., Deprest, J. and Vercauteren, T. 2018. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. Journal of Medical Imaging. 5 (2) 021206. https://doi.org/10.1117/1.jmi.5.2.021206

Brain parcellation based on information theory
Bonmati Coll, E., Bardera, A. and Boada, I. 2017. Brain parcellation based on information theory. Computer Methods and Programs in Biomedicine. 151, pp. 203-212. https://doi.org/10.1016/j.cmpb.2017.07.012

Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2017. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Quebec City, QC, Canada 11 - 13 Sep 2017 Springer. https://doi.org/10.1007/978-3-319-66182-7_83

2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions
Hu, Y., Bonmati Coll, E., Gibson, E., Hipwell, J.H., Hawkes, D.J., Bandula, S., Pereira, S.P. and Barratt, D.C. 2016. 2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Athens, Greece 17 - 21 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-46720-7_60

Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound
Bonmati Coll, E., Hu, Y., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2016. Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound. Computer-Assisted and Robotic Endoscopy. CARE 2016. Athens, Greece 17 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-54057-3_4

Measuring Complex Brain Networks Structure
Bonmati Ester, Bardera Anton, Boada Imma and Bonmati Coll, E. 2016. Measuring Complex Brain Networks Structure. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2016. https://doi.org/10.3389/conf.fninf.2016.20.00012

Hierarchical clustering based on the information bottleneck method using a control process
Bonmati Coll, E., Bardera, A., Boada, I., Feixas, M. and Sbert, M. 2015. Hierarchical clustering based on the information bottleneck method using a control process. Pattern Analysis and Applications (PAA). 18, pp. 619-637. https://doi.org/10.1007/s10044-015-0467-1

Permalink - https://westminsterresearch.westminster.ac.uk/item/wz91q/guided-ultrasound-acquisition-for-nonrigid-image-registration-using-reinforcement-learning


Share this

Usage statistics

1 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.