Novel Brain Complexity Measures Based on Information Theory

Bonmati Coll, E., Bardera, A., Feixas, M. and Boada, I. 2018. Novel Brain Complexity Measures Based on Information Theory. Entropy. 20 (7) 491. https://doi.org/10.3390/e20070491

TitleNovel Brain Complexity Measures Based on Information Theory
TypeJournal article
AuthorsBonmati Coll, E., Bardera, A., Feixas, M. and Boada, I.
Abstract

Brain networks are widely used models to understand the topology and organization of the brain. These networks can be represented by a graph, where nodes correspond to brain regions and edges to structural or functional connections. Several measures have been proposed to describe the topological features of these networks, but unfortunately, it is still unclear which measures give the best representation of the brain. In this paper, we propose a new set of measures based on information theory. Our approach interprets the brain network as a stochastic process where impulses are modeled as a random walk on the graph nodes. This new interpretation provides a solid theoretical framework from which several global and local measures are derived. Global measures provide quantitative values for the whole brain network characterization and include entropy, mutual information, and erasure mutual information. The latter is a new measure based on mutual information and erasure entropy. On the other hand, local measures are based on different decompositions of the global measures and provide different properties of the nodes. Local measures include entropic surprise, mutual surprise, mutual predictability, and erasure surprise. The proposed approach is evaluated using synthetic model networks and structural and functional human networks at different scales. Results demonstrate that the global measures can characterize new properties of the topology of a brain network and, in addition, for a given number of nodes, an optimal number of edges is found for small-world networks. Local measures show different properties of the nodes such as the uncertainty associated to the node, or the uniqueness of the path that the node belongs. Finally, the consistency of the results across healthy subjects demonstrates the robustness of the proposed measures.

Article number491
JournalEntropy
Journal citation20 (7)
ISSN1099-4300
Year2018
PublisherMDPI
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.3390/e20070491
Web address (URL)http://www.mdpi.com/1099-4300/20/7/491
Publication dates
Published25 Jun 2018

Related outputs

Active learning using adaptable task-based prioritisation
Shaheer U. Saeed, João Ramalhinho, Mark Pinnock, Ziyi Shen, Yunguan Fu, Nina Montaña-Brown, Ester Bonmati, Dean C. Barratt, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson and Yipeng Hu 2024. Active learning using adaptable task-based prioritisation. Medical Image Analysis. 95 103181. https://doi.org/10.1016/j.media.2024.103181

Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
João Ramalhinho, Thomas Dowrick, Bonmati Coll, E. and Matthew J. Clarkson 2023. Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes. Journal of Open Research Software. 11 (1), p. 3. https://doi.org/10.5334/jors.422

Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks
Bonmati Coll, E., Hu, Y., Grimwood, A., Johnson, G.J., Goodchild, G., Keane, M.G., Gurusamy, K., Davidson, B., Clarkson, M.J., Pereira, S.P. and Barratt, D.C. 2022. Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks. IEEE Transactions on Medical Imaging. 41 (6), pp. 1311-1319. https://doi.org/10.1109/tmi.2021.3139023

Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification
Grimwood, A., McNair, H., Hu, Y., Bonmati Coll, E., Barratt, D. and Harris, E.J. 2020. Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference. Lima, Peru 04 - 08 Oct 2020 Springer. https://doi.org/10.1007/978-3-030-59716-0_52

Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures
Bonmati Coll, E., Hu, Y., Gibson, E., Uribarri, L., Keane, G., Gurusami, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures. International Journal of Computer Assisted Radiology and Surgery. 13, pp. 875-883. https://doi.org/10.1007/s11548-018-1762-2

Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2018. Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks. IEEE Transactions on Medical Imaging. 37 (8), pp. 1822-1834. https://doi.org/10.1109/tmi.2018.2806309

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network
Bonmati Coll, E., Hu, Y., Sindhwani, N., Dietz, H.P., D'hooge, J., Barratt, D., Deprest, J. and Vercauteren, T. 2018. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. Journal of Medical Imaging. 5 (2) 021206. https://doi.org/10.1117/1.jmi.5.2.021206

Brain parcellation based on information theory
Bonmati Coll, E., Bardera, A. and Boada, I. 2017. Brain parcellation based on information theory. Computer Methods and Programs in Biomedicine. 151, pp. 203-212. https://doi.org/10.1016/j.cmpb.2017.07.012

Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks
Gibson, E., Giganti, F., Hu, Y., Bonmati Coll, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2017. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Quebec City, QC, Canada 11 - 13 Sep 2017 Springer. https://doi.org/10.1007/978-3-319-66182-7_83

2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions
Hu, Y., Bonmati Coll, E., Gibson, E., Hipwell, J.H., Hawkes, D.J., Bandula, S., Pereira, S.P. and Barratt, D.C. 2016. 2D-3D Registration Accuracy Estimation for Optimised Planning of Image-Guided Pancreatobiliary Interventions. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Athens, Greece 17 - 21 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-46720-7_60

Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound
Bonmati Coll, E., Hu, Y., Gurusamy, K., Davidson, B., Pereira, S.P., Clarkson, M.J. and Barratt, D.C. 2016. Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound. Computer-Assisted and Robotic Endoscopy. CARE 2016. Athens, Greece 17 Oct 2016 Springer. https://doi.org/10.1007/978-3-319-54057-3_4

Measuring Complex Brain Networks Structure
Bonmati Ester, Bardera Anton, Boada Imma and Bonmati Coll, E. 2016. Measuring Complex Brain Networks Structure. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2016. https://doi.org/10.3389/conf.fninf.2016.20.00012

Hierarchical clustering based on the information bottleneck method using a control process
Bonmati Coll, E., Bardera, A., Boada, I., Feixas, M. and Sbert, M. 2015. Hierarchical clustering based on the information bottleneck method using a control process. Pattern Analysis and Applications (PAA). 18, pp. 619-637. https://doi.org/10.1007/s10044-015-0467-1

Permalink - https://westminsterresearch.westminster.ac.uk/item/vwq2y/novel-brain-complexity-measures-based-on-information-theory


Share this

Usage statistics

111 total views
32 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.