Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells

Warner, E.F., Smith, M.J., Zhang, Q., Raheem, S., O’Hagan, D., O'Connell, M.A. and Kay, C.D. 2017. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Molecular Nutrition & Food Research. 61 (9), p. 1600053. doi:10.1002/mnfr.201700053

TitleSignatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells
AuthorsWarner, E.F., Smith, M.J., Zhang, Q., Raheem, S., O’Hagan, D., O'Connell, M.A. and Kay, C.D.
Abstract

Scope
The physiological relevance of contemporary cell culture studies is often perplexing, given the use of unmetabolized phytochemicals at supraphysiological concentrations. We investigated the activity of physiologically relevant anthocyanin metabolite signatures, derived from a previous pharmacokinetics study of 500 mg 13C5-cyanidin-3-glucoside in 8 healthy participants, on soluble vascular adhesion molecule-1 (VCAM-1) and interleukin-6 (IL-6) in human endothelial cells.

Methods and results
Signatures of peak metabolites (previously identified at 1, 6 and 24 h post-bolus) were reproduced using pure standards and effects were investigated across concentrations ten-fold lower and higher than observed mean (<5 μM) serum levels. Tumor necrosis factor-α (TNF-α)-stimulated VCAM-1 was reduced in response to all treatments, with maximal effects observed for the 6 h and 24 h profiles. Profiles tested at ten-fold below mean serum concentrations (0.19-0.44 μM) remained active. IL-6 was reduced in response to 1, 6 and 24 h profiles, with maximal effects observed for 6 h and 24 h profiles at concentrations above 2 μM. Protein responses were reflected by reductions in VCAM-1 and IL-6 mRNA, however there was no effect on phosphorylated NFκB-p65 expression.

Conclusion
Signatures of anthocyanin metabolites following dietary consumption reduce VCAM-1 and IL-6 production, providing evidence of physiologically relevant biological activity.

Article number1600053
JournalMolecular Nutrition & Food Research
Journal citation61 (9), p. 1600053
ISSN1613-4125
Year2017
PublisherWiley
Accepted author manuscriptWarner_et_al-2017-Molecular_Nutrition_&_Food_Research.pdf
Digital Object Identifier (DOI)doi:10.1002/mnfr.201700053
Publication dates
Published online29 Apr 2017
Published29 Apr 2017
Published in printSep 2017

Related outputs

Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis
Lee, J.J., Lim, J., Gao, S., Lawson, C.P., Odell, M., Raheem, S., Woo, J., Kang, S-H., Kang, S-S., Jeon, B-Y. and Eoh, H. 2018. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Scientific Reports. 8. doi:10.1038/s41598-018-26950-z

Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance
Warhurst, D., Craig, J.C. and Raheem, S. 2016. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance. PLoS ONE. 11 (8), p. e0160091. doi:10.1371/journal.pone.0160091

Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells
Warner, E.F., Zhang, Q., Raheem, S., O’Hagan, D., O’Connell, M.A. and Kay, C.D. 2016. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells. Journal of Nutrition. 146 (3), pp. 465-473. doi:10.3945/jn.115.217943

Effects of Fluconazole on the Metabolomic Profile of Candida albicans
Katragkou, A., Alexander, E.L., Eoh, H., Raheem, S., Roilides, E. and Walsh, T.J. 2016. Effects of Fluconazole on the Metabolomic Profile of Candida albicans. Journal of Antimicrobial Chemotherapy. 71 (3), pp. 635-640. doi:10.1093/jac/dkv381

Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.
di Gesso, J.L., Kerr, J.S., Zhang, Q., Raheem, S., Yalamanchili, S.K., O’Hagan, D., Kay, C.D. and O'Connell, M.A. 2015. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Molecular Nutrition & Food Research. 59 (6), pp. 1143-1154. doi:10.1002/mnfr.201400799

Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells
Amin, H.P., Czank, C., Raheem, S., Zhang, Q., Botting, N.P., Cassidy, A. and Kay, C.D. 2015. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Molecular Nutrition & Food Research. 59 (6), pp. 1095-1106. doi:10.1002/mnfr.201400803

Methods for Isolating, Identifying, and Quantifying Anthocyanin Metabolites in Clinical Samples
de Ferrars, R.M., Czank, C., Saha, S., Needs, P.W., Zhang, Q., Raheem, S., Botting, N.P., Kroon, P.A. and Kay, C.D. 2014. Methods for Isolating, Identifying, and Quantifying Anthocyanin Metabolites in Clinical Samples. Analytical Chemistry. 86 (20), pp. 10052-10058. doi:10.1021/ac500565a

Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids
Zhang, Q., Raheem, S., Botting, N.P., Slawin, A.M.Z., Kay, C.D. and O’Hagan, D. 2012. Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron. 68, pp. 4194-4201. doi:10.1016/j.tet.2012.03.100

Total synthesis of 3,5-O-dicaffeoylquinic acid and its derivatives
Raheem, S., Botting, Nigel P., Williamson, G. and Barron, D. 2011. Total synthesis of 3,5-O-dicaffeoylquinic acid and its derivatives. Tetrahedron Letters. 52 (52), p. 7175. doi:10.1016/j.tetlet.2011.10.127

Permalink - https://westminsterresearch.westminster.ac.uk/item/q0wz4/signatures-of-anthocyanin-metabolites-identified-in-humans-inhibit-biomarkers-of-vascular-inflammation-in-human-endothelial-cells


Share this
Tweet
Email