The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions

Gough, L., Brown, D., Deb, S., Sparks, S.A. and McNaughton, L. 2018. The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. European Journal of Applied Physiology. 118 (12), p. 2489–2498. doi:10.1007/s00421-018-3975-z

TitleThe influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions
TypeJournal article
AuthorsGough, L., Brown, D., Deb, S., Sparks, S.A. and McNaughton, L.
Abstract

Purpose Exacerbated hydrogen cation (H⁺) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid–base balance recovery in acute moderate hypoxic conditions. Methods Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg⁻¹ BM NaHCO3 (SBC2), 0.3 g kg⁻¹ BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg⁻¹ BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3⁻]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). Results Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. Conclusion NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg⁻¹ BM.

JournalEuropean Journal of Applied Physiology
Journal citation118 (12), p. 2489–2498
ISSN1439-6319
Year2018
PublisherSpringer
Publisher's versionGough2018_Article_TheInfluenceOfAlkalosisOnRepea.pdf
Digital Object Identifier (DOI)doi:10.1007/s00421-018-3975-z
Publication dates
Published online08 Sep 2018
Published in printDec 2018
LicenseCC BY 4.0

Related outputs

High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists
Mosher, S., Gough, L., Deb, S., Saunders, B., McNaughton, L., Brown, D. and Sparks, S.A. 2019. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Research in Sports Medicine: an International Journal. Advanced online publication. doi:10.1080/15438627.2019.1586707

A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males
Hilton, N., Leach, N., Sparks, S.A., Gough, L., Deb, S., Craig, M. and McNaughton, L. 2019. A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males. Sports Medicine - open. 5 (4). doi:10.1186/s40798-019-0177-0

Buffering agents: Sodium Bicarbonate, Sodium Citrate, Sodium Phosphate
McNaughton, L., Brewer, C., Deb, S., Hilton, N., Gough, L. and Sparks, S.A. 2019. Buffering agents: Sodium Bicarbonate, Sodium Citrate, Sodium Phosphate. in: Hoffman, J. (ed.) Dietary Supplementation in Sport and Exercise: Evidence, Safety, and Ergogenic Benefits Routledge. pp. 191-205

Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression
Deb, S., Brown, D., Gough, L., Mclellan, C.P., Swinton, P., Sparks, S.A. and McNaughton, L. 2018. Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. European Journal of Sport Science. 18 (2), pp. 243-256. doi:10.1080/17461391.2017.1410233

Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions
Deb, S., Gough, L., Sparks, S.A. and McNaughton, L. 2018. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. European Journal of Applied Physiology. 118 (3), pp. 607-615. doi:10.1007/s00421-018-3801-7

Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2018. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. Journal of Sports Sciences. 36 (15), pp. 1705-1712. doi:10.1080/02640414.2017.1410875

The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study. Sports Medicine. 47 (10), p. 2117–2127. doi:10.1007/s40279-017-0699-x

Physiological responses to prolonged saturation diving: a field based pilot study
Deb, S., Burgess, K., Swinton, P. and Dolan, E. 2017. Physiological responses to prolonged saturation diving: a field based pilot study. Undersea and Hyperbaric Medicine: journal of the Undersea and Hyperbaric Medical Society. 44 (6), pp. 581-587. doi:10.22462/11.12.2017.9

Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review
Brown, D., Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Frontiers in Nutrition. 4 (76). doi:10.3389/fnut.2017.00076

The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists. Sports Medicine - open. 3. doi:10.1186/s40798-017-0101-4

Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis
Deb, S., Gough, L., Sparks, S.A. and McNaughton, L. 2017. Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. European Journal of Applied Physiology. 117 (5), pp. 901-912. doi:10.1007/s00421-017-3574-4

Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers
Deb, S., Swinton, P. and Dolan, E. 2016. Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers. Extreme Physiology and Medicine. 7 (5), p. 1. doi:10.1186/s13728-015-0042-9

Brief communication: Self-reported health and activity habits and attitudes in saturation divers
Dolan, E., Deb, S., Stephan, G. and Swinton, P. 2016. Brief communication: Self-reported health and activity habits and attitudes in saturation divers. Undersea and Hyperbaric Medicine: journal of the Undersea and Hyperbaric Medical Society. 43 (2), pp. 93-101.

Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid
McNaughton, L., Bentley, D., Deb, S., Gough, L. and Sparks, S.A. 2016. Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid. Current Sports Medicine Reports. 15 (4), pp. 233-244. doi:10.1249/JSR.0000000000000283

Permalink - https://westminsterresearch.westminster.ac.uk/item/q97ww/the-influence-of-alkalosis-on-repeated-high-intensity-exercise-performance-and-acid-base-balance-recovery-in-acute-moderate-hypoxic-conditions


Restricted files

Accepted author manuscript
Under embargo indefinitely

Share this
Tweet
Email