Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review

Brown, D., Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Frontiers in Nutrition. 4 (76). doi:10.3389/fnut.2017.00076

TitleAstaxanthin in Exercise Metabolism, Performance and Recovery: A Review
TypeJournal article
AuthorsBrown, D., Gough, L., Deb, S., Sparks, S.A. and McNaughton, L.
Abstract

During periods of heavy exercise training and competition, lipid, protein and nucleic molecules can become damaged due to an overproduction of reactive oxygen and nitrogen species within the exercising organism. As antioxidants can prevent and delay cellular oxidative damage through removing, deactivating and preventing the formation of reactive oxygen and nitrogen species, supplementation with exogenous antioxidant compounds has become a commercialised nutritional strategy commonly adopted by recreationally active individuals and athletes. The following review is written as a critical appraisal of the current literature surrounding astaxanthin and its potential application as a dietary supplement in exercising humans. Astaxanthin is a lipid-soluble antioxidant carotenoid available to supplement through the intake of Haematococcus pluvialis-derived antioxidant products. Based upon in vitro and in vivo research conducted in mice exercise models, evidence would suggest that astaxanthin supplementation could potentially improve indices of exercise metabolism, performance and recovery because of its potent antioxidant capacity. In exercising humans, however, these observations have yet to be consistently realised, with equivocal data reported. Implicated, in part, by the scarcity of well-controlled, scientifically rigorous research, future investigation is necessary to enable a more robust conclusion in regard to the efficacy of astaxanthin supplementation and its potential role in substrate utilisation, endurance performance and acute recovery in exercising humans.

Keywordsantioxidants, carotenoids, Haematococcus pluvialis, oxidative stress, inflammation, delayed onset muscle soreness, fat oxidation, endurance exercise
Article number76
JournalFrontiers in Nutrition
Journal citation4 (76)
ISSN2296-861X
Year2017
PublisherFrontiers
Publisher's versionfnut-04-00076.pdf
Digital Object Identifier (DOI)doi:10.3389/fnut.2017.00076
PubMed ID29404334
Publication dates
Published18 Jan 2018
LicenseCC BY 4.0

Related outputs

High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists
Mosher, S., Gough, L., Deb, S., Saunders, B., McNaughton, L., Brown, D. and Sparks, S.A. 2019. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Research in Sports Medicine: an International Journal. Advanced online publication. doi:10.1080/15438627.2019.1586707

A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males
Hilton, N., Leach, N., Sparks, S.A., Gough, L., Deb, S., Craig, M. and McNaughton, L. 2019. A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males. Sports Medicine - open. 5 (4). doi:10.1186/s40798-019-0177-0

Buffering agents: Sodium Bicarbonate, Sodium Citrate, Sodium Phosphate
McNaughton, L., Brewer, C., Deb, S., Hilton, N., Gough, L. and Sparks, S.A. 2019. Buffering agents: Sodium Bicarbonate, Sodium Citrate, Sodium Phosphate. in: Hoffman, J. (ed.) Dietary Supplementation in Sport and Exercise: Evidence, Safety, and Ergogenic Benefits Routledge. pp. 191-205

Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression
Deb, S., Brown, D., Gough, L., Mclellan, C.P., Swinton, P., Sparks, S.A. and McNaughton, L. 2018. Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. European Journal of Sport Science. 18 (2), pp. 243-256. doi:10.1080/17461391.2017.1410233

Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions
Deb, S., Gough, L., Sparks, S.A. and McNaughton, L. 2018. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. European Journal of Applied Physiology. 118 (3), pp. 607-615. doi:10.1007/s00421-018-3801-7

The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions
Gough, L., Brown, D., Deb, S., Sparks, S.A. and McNaughton, L. 2018. The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. European Journal of Applied Physiology. 118 (12), p. 2489–2498. doi:10.1007/s00421-018-3975-z

Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2018. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. Journal of Sports Sciences. 36 (15), pp. 1705-1712. doi:10.1080/02640414.2017.1410875

The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study. Sports Medicine. 47 (10), p. 2117–2127. doi:10.1007/s40279-017-0699-x

Physiological responses to prolonged saturation diving: a field based pilot study
Deb, S., Burgess, K., Swinton, P. and Dolan, E. 2017. Physiological responses to prolonged saturation diving: a field based pilot study. Undersea and Hyperbaric Medicine: journal of the Undersea and Hyperbaric Medical Society. 44 (6), pp. 581-587. doi:10.22462/11.12.2017.9

The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists
Gough, L., Deb, S., Sparks, S.A. and McNaughton, L. 2017. The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists. Sports Medicine - open. 3. doi:10.1186/s40798-017-0101-4

Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis
Deb, S., Gough, L., Sparks, S.A. and McNaughton, L. 2017. Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. European Journal of Applied Physiology. 117 (5), pp. 901-912. doi:10.1007/s00421-017-3574-4

Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers
Deb, S., Swinton, P. and Dolan, E. 2016. Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers. Extreme Physiology and Medicine. 7 (5), p. 1. doi:10.1186/s13728-015-0042-9

Brief communication: Self-reported health and activity habits and attitudes in saturation divers
Dolan, E., Deb, S., Stephan, G. and Swinton, P. 2016. Brief communication: Self-reported health and activity habits and attitudes in saturation divers. Undersea and Hyperbaric Medicine: journal of the Undersea and Hyperbaric Medical Society. 43 (2), pp. 93-101.

Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid
McNaughton, L., Bentley, D., Deb, S., Gough, L. and Sparks, S.A. 2016. Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid. Current Sports Medicine Reports. 15 (4), pp. 233-244. doi:10.1249/JSR.0000000000000283

Permalink - https://westminsterresearch.westminster.ac.uk/item/q97wy/astaxanthin-in-exercise-metabolism-performance-and-recovery-a-review


Share this
Tweet
Email