Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend

Mendibil, Xabier, González-Pérez, Francisco, Bazan, Xabier, Díez-Ahedo, Ruth, Quintana, Iban, Rodríguez, Francisco Javier, Basnett, Pooja, Nigmatullin, Rinat, Lukasiewicz, Barbara, Roy, Ipsita, Taylor, Caroline S., Glen, Adam, Claeyssens, F., Haycock, John W., Schaafsma, Wandert, González, Eva, Castro, Begoña, Duffy, Patrick and Merino, S. 2021. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomaterials Science & Engineering. 7 (2), pp. 672-689. https://doi.org/10.1021/acsbiomaterials.0c01476

TitleBioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend
TypeJournal article
AuthorsMendibil, Xabier, González-Pérez, Francisco, Bazan, Xabier, Díez-Ahedo, Ruth, Quintana, Iban, Rodríguez, Francisco Javier, Basnett, Pooja, Nigmatullin, Rinat, Lukasiewicz, Barbara, Roy, Ipsita, Taylor, Caroline S., Glen, Adam, Claeyssens, F., Haycock, John W., Schaafsma, Wandert, González, Eva, Castro, Begoña, Duffy, Patrick and Merino, S.
Abstract

Severe peripheral nerve injuries represent a large clinical problem with relevant challenges such as the development of successful synthetic scaffolds as substitutes to autologous nerve grafting. Numerous studies have reported the use of polyesters and type I collagen-based nerve guidance conduits (NGCs) to promote nerve regeneration through critical nerve defects while providing protection from external factors. However, none of the commercially available hollow bioresorbable NGCs have demonstrated superior clinical outcomes to an autologous nerve graft. Hence, new materials and NGC geometries have been explored in the literature to mimic the native nerve properties and architecture. Here, we report a novel blend of a natural medium chain length polyhydroxyalkanoate (MCL-PHA) with a synthetic aliphatic polyester, poly(ε-caprolactone) (PCL), suitable for extrusion-based high-throughput manufacturing. The blend was designed to combine the excellent ability of PHAs to support the growth and proliferation of mammalian cells with the good processability of PCL. The material exhibited excellent neuroregenerative properties and a good bioresorption rate, while the extruded porous tubes exhibited similar mechanical properties to the rat sciatic nerve. The NGCs were implanted to treat a 10 mm long sciatic nerve defect in rats, where significant differences were found between thin and thick wall thickness implants, and both electrophysiological and histological data, as well as the number of recovered animals, provided superior outcomes than the well-referenced synthetic Neurolac NGC.

JournalACS Biomaterials Science & Engineering
Journal citation7 (2), pp. 672-689
ISSN2373-9878
Year2021
PublisherAmerican Chemical Society (ACS)
Digital Object Identifier (DOI)https://doi.org/10.1021/acsbiomaterials.0c01476
Publication dates
Published online21 Jan 2021
Published in print08 Feb 2021

Related outputs

Pre‐clinical study of Peripheral Nerve Regeneration using Nerve Guidance Conduits based on Polyhydroxyalkanaotes
Lizarraga Valderrama, L., Ronchi, Giulia, Nigmatullin, Rinat, Fregnan, Federica, Basnett, Pooja, Paxinou, Alexandra, Geuna, Stefano and Roy, I. 2021. Pre‐clinical study of Peripheral Nerve Regeneration using Nerve Guidance Conduits based on Polyhydroxyalkanaotes. Bioengineering & Translational Medicine. e10223. Advanced online publication. https://doi.org/10.1002/btm2.10223

Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration
Marcello, Elena, Maqbool, Muhammad, Nigmatullin, Rinat, Cresswell, Mark, Jackson, Philip R., Basnett, Pooja, Knowles, Jonathan C., Boccaccini, Aldo R. and Roy, I. 2021. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology. 9 647007. https://doi.org/10.3389/fbioe.2021.647007

Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution
Majid, Qasim A., Fricker, Annabelle T. R., Gregory, David A., Davidenko, Natalia, Hernandez Cruz, Olivia, Jabbour, Richard J., Owen, Thomas J., Basnett, Pooja, Lukasiewicz, Barbara, Stevens, Molly, Best, Serena, Cameron, Ruth, Sinha, Sanjay, Harding, Sian E. and Roy, Ipsita 2020. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine. 7 554597. https://doi.org/10.3389/fcvm.2020.554597

Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing
Orlando, I., Basnett, P., Nigmatullin, R., Wang, W., Knowles, J. and Roy, I. 2020. Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Frontiers in Bioengineering and Biotechnology. 8 557885. https://doi.org/10.3389/fbioe.2020.557885

Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application
Azimi, Bahareh, Thomas, Lily, Fusco, A., Kalaoglu-Altan, Ozlem Ipek, Basnett, P., Cinelli, P., De Clerck, Karen, Roy, I., Donnarumma, G., Coltelli, M., Danti, S. and Lazzeri, A. 2020. Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials. 11 (3), p. e62. https://doi.org/10.3390/jfb11030062

Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections
Ward, A., Dubey, P., Basnett, P., Lika, G., Newman, G., Corrigan, D., Russell, C., Kim, J., Chakrabarty, S., Connolly, P. and Roy, I. 2020. Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Frontiers in Bioengineering and Biotechnology. 8 1039. https://doi.org/10.3389/fbioe.2020.01039

Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications
Pacharra, S., McMahon, S., Duffy, P., Basnett, P., Yu, W., Seisel, S., Stervbo, U., Babel, N., Roy, I., Viebahn, R., Wang, W. and Salber, J. 2020. Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Frontiers in Bioengineering and Biotechnology. 8 991. https://doi.org/10.3389/fbioe.2020.00991

Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites
Schuhladen, K., Lukasiewicz, B., Basnett, P., Roy, I. and Boccaccini, A.R. 2020. Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. Materials. 13 (11) 2607. https://doi.org/10.3390/ma13112607

Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses
Basnett, P., Marcello, E., Lukasiewicz, B., Nigmatullin, R., Paxinou, A., Ahmad, M.A., Gurumayum , B. and Roy, I. 2020. Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses. Journal of Functional Biomaterials. 11 (2) 24. https://doi.org/10.3390/jfb11020024

Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response
Ortiz, R, Basnett, P., Roy, I. and Quintana, I. 2019. Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response. e-Polymers. 12 (1) 127. https://doi.org/10.3390/polym12010127

Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses
Avugadda, S.K., Materia, M.E., Nigmatullin, R., Cabrera, D., Marotta, R., Cabada, T.F., Marcello, E., Nitti, S., Artés-Ibañez, E.J., Basnett, P., Wilhelm, C., Teran, F.J., Roy, I. and Pellegrino, T. 2019. Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses. Chemistry of Materials. 31 (15), pp. 5450-5463. https://doi.org/10.1021/acs.chemmater.9b00728

Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source
Basnett, P., Marcello, E., Lukasiewicz, B., Panchal, B., Nigmatullin, R., Knowles, J.C. and Roy, I. 2018. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. Journal of Materials Science: Materials in Medicine. 29, p. 179 179. https://doi.org/10.1007/s10856-018-6183-9

In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells
Constantinides, C., Basnett, P., Lukasiewicz, B., Carnicer, R., Swider, E., Majid, Q.A., Srinivas, M., Carr, C.A. and Roy, I. 2018. In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS Applied Materials and Interfaces. 10 (30), p. 25056–25068. https://doi.org/10.1021/acsami.8b06096

Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering
Lukasiewicz, B., Basnett, P., Nigmatullin, R., Matharu, R., Knowles, J.C. and Roy, I. 2018. Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering. Acta Biomaterialia. 71, pp. 225-234. https://doi.org/10.1016/j.actbio.2018.02.027

Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering
Bagdadi, A., Safari, M., Dubey, P., Basnett, P., Sofokleous P., Humphrey E, Locke, I.C., Edirisinghe M., Terracciano C., Boccaccini, A.R., Knowles, J.C., Harding, S. and Roy, I. 2018. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), pp. E495-E512. https://doi.org/10.1002/term.2318

Science and Principles of Biodegradable and Bioresorbable Medical Polymers
Basnett, P., Ravi, S. and Roy, I. 2017. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. in: Xiang Zhang (ed.) Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties Woodhead Publishing. pp. 257-277

Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold
Basnett, P., Lukasiewicz, B., Marcello, E., Kaur, H., Knowles, J.C. and Roy, I. 2017. Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology. 10 (6), pp. 1384-1399. https://doi.org/10.1111/1751-7915.12782

Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates)
Huerta-Angeles, G., Brandejsová, M., Nigmatullin, R., Kopecká, K., Vágnerová, H., Šmejkalová, D., Roy, I. and Velebný, V. 2017. Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). Carbohydrate Polymers. 171, pp. 220-228. https://doi.org/10.1016/j.carbpol.2017.05.011

Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications
Basnett, P. 2014. Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications. PhD thesis University of Westminster Faculty of Science and Technology

Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C., Keshavarz, T. and Roy, I. 2013. Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers. 73 (10), pp. 1340-1348. https://doi.org/10.1016/j.reactfunctpolym.2013.03.019

Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C. and Roy, I. 2013. Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. Bioinspired, Biomimetic and Nanobiomaterials. 2 (3), pp. 141-153. https://doi.org/10.1680/bbn.13.00009

Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites
Basnett, P., Knowles, J.C., Pishbin, F., Smith, C.L., Keshavarz, T., Boccaccini, A.R. and Roy, I. 2012. Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites. Advanced Engineering Materials. 14 (6), pp. B330-B343. https://doi.org/10.1002/adem.201180076

Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications
Basnett, P., Smith, C.L., Boccaccini, A.R., Knowles, J.C., Keshavarz, T. and Roy, I. 2011. Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications. European Society of Biomaterials. Dublin, Ireland Sept 2011

Production of polyhydroxyalkanoates and their medical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their medical applications. 7th International Conference on Polymer and Textile Biotechnology. Milan, Italy 2nd - 4th March 2011

Production of polyhydroxyalkanoates and their biomedical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their biomedical applications. Euro BioMat 2011 - European Symposium on Biomaterials and Related Areas. Jena, Germany

In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV
Basnett, P., Philip, S.E., Markhiv, A., Vydayanathan, A. and Roy, I. 2010. In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV. 12th International Symposium on Biodegradable Polyesters. Stuttgart, Germany.

Microbial production of biodegradable polymers and their role in cardiac stent development
Basnett, P. and Roy, I. 2010. Microbial production of biodegradable polymers and their role in cardiac stent development. in: Mendez-Vilas, A. (ed.) Current research, technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Biodegradable polymers and their role in coronary stent development
Basnett, P. and Roy, I. 2010. Biodegradable polymers and their role in coronary stent development. in: Current research in technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Permalink - https://westminsterresearch.westminster.ac.uk/item/v4wq7/bioresorbable-and-mechanically-optimized-nerve-guidance-conduit-based-on-a-naturally-derived-medium-chain-length-polyhydroxyalkanoate-and-poly-caprolactone-blend


Share this
Tweet
Email

Usage statistics

1 total views
0 total downloads
0 views this month
0 downloads this month
These values are for the period from September 2nd 2018, when this repository was created

Export as