Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes

Lizarraga Valderrama, L., Ronchi, Giulia, Nigmatullin, Rinat, Fregnan, Federica, Basnett, Pooja, Paxinou, Alexandra, Geuna, Stefano and Roy, I. 2021. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioengineering & Translational Medicine. 6 (3) e10223. https://doi.org/10.1002/btm2.10223

TitlePreclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes
TypeJournal article
AuthorsLizarraga Valderrama, L., Ronchi, Giulia, Nigmatullin, Rinat, Fregnan, Federica, Basnett, Pooja, Paxinou, Alexandra, Geuna, Stefano and Roy, I.
Abstract

Nerve guidance conduits (NGCs) are used as an alternative to the “gold standard” nerve autografting, preventing the need for surgical intervention required to harvest autologous nerves. However, the regeneration outcomes achieved with the current NGCs are only comparable with autografting when the gap is short (less than 10 mm). In the present study, we have developed NGCs made from a blend of Polyhydroxyalkanoates, a family of natural resorbable polymers. Hollow NGCs made from a 75:25 Poly(3‐hydroxyoctanoate)/Poly(3‐hydroxybutyrate) blend (PHA‐NGCs) were manufactured using dip‐moulding. These PHA‐NGCs showed appropriate flexibility for peripheral nerve regeneration. In vitro cell studies performed using RT4‐D6P2T rat Schwann cell line confirmed that the material is capable of sustaining cell proliferation and adhesion. PHA‐NGCs were then implanted in vivo to repair 10 mm gaps of the median nerve of female Wistar rats for 12 weeks. Functional evaluation of the regenerated nerve using the grasping test showed that PHA‐NGCs displayed similar motor recovery as the autograft, starting from week 7. Additionally, nerve cross‐sectional area, density and number of myelinated cells, as well as axon diameter, fibre diameter, myelin thickness and g‐ratio obtained using the PHA‐NGCs were found comparable to an autograft. This preclinical data confirmed that the PHA‐NGCs are indeed highly promising candidates for peripheral nerve regeneration.

Article numbere10223
JournalBioengineering & Translational Medicine
Journal citation6 (3)
ISSN2380-6761
Year2021
PublisherWiley
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1002/btm2.10223
Web address (URL)https://aiche.onlinelibrary.wiley.com/doi/10.1002/btm2.10223
Publication dates
Published online04 May 2021
Published in printSep 2021
Licensehttp://onlinelibrary.wiley.com/termsAndConditions#vor

Related outputs

3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration
Marcello, E., Nigmatullin, R., Basnett, Pooja, Maqbool, Muhammad, Prieto, M., Knowles, J.C., Boccaccini, A. and Roy, I. 2024. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.4c00624

The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability
Basnett, P., Percy, L., Sengupta, D. and Smith, C.L. 2023. The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability. Westminster Learning and Teaching Symposium 2023: Better Than the Real Thing? Exploring Education Futures at the University of Westminster. University of Westminster 04 Sep 2023

Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair
Taylor, C., Behbehani, Mehri, Glen, Adam, Basnett, Pooja, Gregory, D., Lukasiewicz, Barbara B., Nigmatullin, R., Claeyssens, F., Roy, Ipsita and Haycock, John W. 2023. Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair. ACS Biomaterials Science & Engineering. 9 (3), pp. 1472-1485. https://doi.org/10.1021/acsbiomaterials.2c00964

Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment.
Esposito, Fortunato Palma, Vecchiato, Vittoria, Buonocore, Carmine, Tedesco, Pietro, Noble, Brendon, Basnett, Pooja and de Pascale, Donatella 2023. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. Bioresource Technology. 368, p. 128287. https://doi.org/10.1016/j.biortech.2022.128287

3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds
Tomar, A., Uysal-Onganer, P., Basnett, P., Pati, U. and Roy, I. 2022. 3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds. Cancers. 14 (14) e3549. https://doi.org/10.3390/cancers14143549

Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres.
Ahmed, D., Puthussery, Hima, Basnett, Pooja, Knowles, J., Lange, S. and Roy, I. 2021. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences. 22 (23) 12852. https://doi.org/10.3390/ijms222312852

Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres
Ahmed, D., Puthussery, H., Basnett, P., Knowles, J., Lange, S. and Roy, I. 2021. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences. 22 (23) e12852. https://doi.org/10.3390/ijms222312852

Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications.
Kalaoglu-Altan, Ozlem Ipek, Baskan, Havva, Meireman, Timo, Basnett, Pooja, Azimi, Bahareh, Fusco, A., Funel, N., Donnarumma, G., Lazzeri, A., Roy, I., Danti, S. and De Clerck, K. 2021. Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials. 14 (17) 4907. https://doi.org/10.3390/ma14174907

Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering
Basnett, P., Matharu, R.K., Taylor, C.S., Illangakoon, U., Dawson, J.I., Kanczler, J.M., Behbehani, M., Humphrey, E., Majid, Q., Lukasiewicz, B., Nigmatullin, R., Haseltine, P., Oreffo, R.O.C., Haycock, J.W., Terracciano, C., Harding, S.E., Edirisinghe, M. and Roy, I. 2021. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces. 13 (28), p. 32624–32639. https://doi.org/10.1021/acsami.0c19689

Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend
Mendibil, Xabier, González-Pérez, Francisco, Bazan, Xabier, Díez-Ahedo, Ruth, Quintana, Iban, Rodríguez, Francisco Javier, Basnett, Pooja, Nigmatullin, Rinat, Lukasiewicz, Barbara, Roy, Ipsita, Taylor, Caroline S., Glen, Adam, Claeyssens, F., Haycock, John W., Schaafsma, Wandert, González, Eva, Castro, Begoña, Duffy, Patrick and Merino, S. 2021. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomaterials Science & Engineering. 7 (2), pp. 672-689. https://doi.org/10.1021/acsbiomaterials.0c01476

Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration
Marcello, Elena, Maqbool, Muhammad, Nigmatullin, Rinat, Cresswell, Mark, Jackson, Philip R., Basnett, Pooja, Knowles, Jonathan C., Boccaccini, Aldo R. and Roy, I. 2021. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology. 9 647007. https://doi.org/10.3389/fbioe.2021.647007

Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution
Majid, Qasim A., Fricker, Annabelle T. R., Gregory, David A., Davidenko, Natalia, Hernandez Cruz, Olivia, Jabbour, Richard J., Owen, Thomas J., Basnett, Pooja, Lukasiewicz, Barbara, Stevens, Molly, Best, Serena, Cameron, Ruth, Sinha, Sanjay, Harding, Sian E. and Roy, Ipsita 2020. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine. 7 554597. https://doi.org/10.3389/fcvm.2020.554597

Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing
Orlando, I., Basnett, P., Nigmatullin, R., Wang, W., Knowles, J. and Roy, I. 2020. Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Frontiers in Bioengineering and Biotechnology. 8 557885. https://doi.org/10.3389/fbioe.2020.557885

Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application
Azimi, Bahareh, Thomas, Lily, Fusco, A., Kalaoglu-Altan, Ozlem Ipek, Basnett, P., Cinelli, P., De Clerck, Karen, Roy, I., Donnarumma, G., Coltelli, M., Danti, S. and Lazzeri, A. 2020. Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials. 11 (3), p. e62. https://doi.org/10.3390/jfb11030062

Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections
Ward, A., Dubey, P., Basnett, P., Lika, G., Newman, G., Corrigan, D., Russell, C., Kim, J., Chakrabarty, S., Connolly, P. and Roy, I. 2020. Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Frontiers in Bioengineering and Biotechnology. 8 1039. https://doi.org/10.3389/fbioe.2020.01039

Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications
Pacharra, S., McMahon, S., Duffy, P., Basnett, P., Yu, W., Seisel, S., Stervbo, U., Babel, N., Roy, I., Viebahn, R., Wang, W. and Salber, J. 2020. Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Frontiers in Bioengineering and Biotechnology. 8 991. https://doi.org/10.3389/fbioe.2020.00991

Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites
Schuhladen, K., Lukasiewicz, B., Basnett, P., Roy, I. and Boccaccini, A.R. 2020. Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. Materials. 13 (11) 2607. https://doi.org/10.3390/ma13112607

Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses
Basnett, P., Marcello, E., Lukasiewicz, B., Nigmatullin, R., Paxinou, A., Ahmad, M.A., Gurumayum , B. and Roy, I. 2020. Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses. Journal of Functional Biomaterials. 11 (2) 24. https://doi.org/10.3390/jfb11020024

Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response
Ortiz, R, Basnett, P., Roy, I. and Quintana, I. 2019. Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response. e-Polymers. 12 (1) 127. https://doi.org/10.3390/polym12010127

Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses
Avugadda, S.K., Materia, M.E., Nigmatullin, R., Cabrera, D., Marotta, R., Cabada, T.F., Marcello, E., Nitti, S., Artés-Ibañez, E.J., Basnett, P., Wilhelm, C., Teran, F.J., Roy, I. and Pellegrino, T. 2019. Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses. Chemistry of Materials. 31 (15), pp. 5450-5463. https://doi.org/10.1021/acs.chemmater.9b00728

Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source
Basnett, P., Marcello, E., Lukasiewicz, B., Panchal, B., Nigmatullin, R., Knowles, J.C. and Roy, I. 2018. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. Journal of Materials Science: Materials in Medicine. 29, p. 179 179. https://doi.org/10.1007/s10856-018-6183-9

In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells
Constantinides, C., Basnett, P., Lukasiewicz, B., Carnicer, R., Swider, E., Majid, Q.A., Srinivas, M., Carr, C.A. and Roy, I. 2018. In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS Applied Materials and Interfaces. 10 (30), p. 25056–25068. https://doi.org/10.1021/acsami.8b06096

Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering
Lukasiewicz, B., Basnett, P., Nigmatullin, R., Matharu, R., Knowles, J.C. and Roy, I. 2018. Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering. Acta Biomaterialia. 71, pp. 225-234. https://doi.org/10.1016/j.actbio.2018.02.027

Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering
Bagdadi, A., Safari, M., Dubey, P., Basnett, P., Sofokleous P., Humphrey E, Locke, I.C., Edirisinghe M., Terracciano C., Boccaccini, A.R., Knowles, J.C., Harding, S. and Roy, I. 2018. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), pp. E495-E512. https://doi.org/10.1002/term.2318

Science and Principles of Biodegradable and Bioresorbable Medical Polymers
Basnett, P., Ravi, S. and Roy, I. 2017. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. in: Xiang Zhang (ed.) Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties Woodhead Publishing. pp. 257-277

Nerve tissue engineering using blends of Polyhydroxyalkanoates
Lizarraga Valderrama, L. 2017. Nerve tissue engineering using blends of Polyhydroxyalkanoates. PhD thesis University of Westminster Life Sciences https://doi.org/10.34737/q430w

Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold
Basnett, P., Lukasiewicz, B., Marcello, E., Kaur, H., Knowles, J.C. and Roy, I. 2017. Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology. 10 (6), pp. 1384-1399. https://doi.org/10.1111/1751-7915.12782

Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates)
Huerta-Angeles, G., Brandejsová, M., Nigmatullin, R., Kopecká, K., Vágnerová, H., Šmejkalová, D., Roy, I. and Velebný, V. 2017. Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). Carbohydrate Polymers. 171, pp. 220-228. https://doi.org/10.1016/j.carbpol.2017.05.011

Biomedical applications of polyhydroxyalkanoates
Roy, I., Lizarraga Valderrama, L., Panchal, B. and Boccaccini, A. 2016. Biomedical applications of polyhydroxyalkanoates. in: Reis, R.L. and Neves, N. (ed.) Biomaterials from nature for advanced devices and therapies Oxford Wiley.

Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration
Lizarraga Valderrama, L., Nigmatullin, R., Taylor, C., Haycock, J.W., Claeyssens, F., Knowles, J.C. and Roy, I. 2015. Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration. Engineering in Life Sciences. 15 (6), pp. 612-621. https://doi.org/10.1002/elsc.201400151

Nerve tissue engineering using blends of polyhydroxyalkanoates
Lizarraga Valderrama, L., Percy, L. and Roy, I. 2014. Nerve tissue engineering using blends of polyhydroxyalkanoates. 8th International Conference on Polymer and Fiber Biotechnology. Braga, Portugal 25 May 2014

Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications
Basnett, P. 2014. Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications. PhD thesis University of Westminster Faculty of Science and Technology https://doi.org/10.34737/8y9yx

Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C. and Roy, I. 2013. Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. Bioinspired, Biomimetic and Nanobiomaterials. 2 (3), pp. 141-153. https://doi.org/10.1680/bbn.13.00009

Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C., Keshavarz, T. and Roy, I. 2013. Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers. 73 (10), pp. 1340-1348. https://doi.org/10.1016/j.reactfunctpolym.2013.03.019

Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites
Basnett, P., Knowles, J.C., Pishbin, F., Smith, C.L., Keshavarz, T., Boccaccini, A.R. and Roy, I. 2012. Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites. Advanced Engineering Materials. 14 (6), pp. B330-B343. https://doi.org/10.1002/adem.201180076

Production of polyhydroxyalkanoates and their medical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their medical applications. 7th International Conference on Polymer and Textile Biotechnology. Milan, Italy 2nd - 4th March 2011

Production of polyhydroxyalkanoates and their biomedical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their biomedical applications. Euro BioMat 2011 - European Symposium on Biomaterials and Related Areas. Jena, Germany

Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications
Basnett, P., Smith, C.L., Boccaccini, A.R., Knowles, J.C., Keshavarz, T. and Roy, I. 2011. Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials. Dublin, Ireland Sept 2011

In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV
Basnett, P., Philip, S.E., Markhiv, A., Vydayanathan, A. and Roy, I. 2010. In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV. 12th International Symposium on Biodegradable Polyesters. Stuttgart, Germany.

Microbial production of biodegradable polymers and their role in cardiac stent development
Basnett, P. and Roy, I. 2010. Microbial production of biodegradable polymers and their role in cardiac stent development. in: Mendez-Vilas, A. (ed.) Current research, technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Biodegradable polymers and their role in coronary stent development
Basnett, P. and Roy, I. 2010. Biodegradable polymers and their role in coronary stent development. in: Current research in technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Permalink - https://westminsterresearch.westminster.ac.uk/item/v4zw2/preclinical-study-of-peripheral-nerve-regeneration-using-nerve-guidance-conduits-based-on-polyhydroxyalkanaotes


Share this

Usage statistics

138 total views
121 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.