Abstract | Recent success stories in automated object or face recognition, partly fuelled by deep learning artificial neural network (ANN) architectures, has led to the advancement of biometric research platforms and, to some extent, the resurrection of Artificial Intelligence (AI). In line with this general trend, inter-disciplinary approaches have taken place to automate the recognition of emotions in adults or children for the benefit of various applications such as identification of children emotions prior to a clinical investigation. Within this context, it turns out that automating emotion recognition is far from being straight forward with several challenges arising for both science(e.g., methodology underpinned by psychology) and technology (e.g., iMotions biometric research platform). In this paper, we present a methodology, experiment and interesting findings, which raise the following research questions for the recognition of emotions and attention in humans: a) adequacy of well-established techniques such as the International Affective Picture System (IAPS), b) adequacy of state-of-the-art biometric research platforms, c) the extent to which emotional responses may be different among children or adults. Our findings and first attempts to answer some of these research questions, are all based on a mixed sample of adults and children, who took part in the experiment resulting into a statistical analysis of numerous variables. These are related with, both automatically and interactively, captured responses of participants to a sample of IAPS pictures. |
---|