Abstract | Iron deficiency and related iron deficiency anaemia (IDA) are the most prevalent nutritional disorders worldwide. The standard treatment involves supple-mentation with solid or liquid iron supplement preparations, usually based on a ferrous salt such as ferrous sulphate, ferrous fumarate, or ferrous gluconate. In the present study, we compared iron uptake and absorption from various solid and liquid iron supplement preparations currently available in the United Kingdom using the well-characterised human epithelial adenocarcinoma cell line Caco-2. Intracellular ferritin protein formation by the Caco-2 cell was considered an indicator of cellular iron uptake and absorption. We investigated the effects of formulation ingredients at a defined pH on iron uptake and absorption, and designed a novel two-stage dissolution-absorption protocol that mimicked physiological conditions. Our experiments revealed wide variations in the rate of dissolution between the various solid iron preparations. Conventional-release ferrous iron tablets dissolved rapidly (48 ± 4 mins to 64 ± 4 mins), whereas modified-released tablets and capsules took significantly longer to undergo complete dissolution (274 ± 8 to 256 ± 8 mins). Among the solid iron preparations, ferrous sulphate conventional-release tablets demon-strated the highest iron absorption, whereas modified-release ferrous prepa-rations demonstrated uniformly low iron absorption, as compared to the control (P < 0.05). Taken together, our results demonstrate that there are wide-ranging variations in dissolution times and iron uptake from oral iron preparations, with the physical characteristics of the preparation as well as the form of iron playing a key role. |
---|