Abstract | During chronic alcohol misuse, hepatic iron overload occurs, leading to exacerbated oxidative stress and liver injury. The aim was to study formulations encapsulated with the antioxidant curcumin to assess their ability protect against oxidative stress in a model of alcohol-related liver disease (ALD) combined with iron. HepG2 (VL-17A) cells were treated with iron (50 µM) alone or with alcohol (200 to 350 mM) over 72 h and markers of oxidative damage, cell death, and mitochondrial function were assessed. Nanoformulations encapsulating curcumin were also studied. VL-17A cells treated with both ethanol and iron showed significant decreases in cell viability (64%, p < 0.0001) when compared to control, and a 56% decrease (p = 0.0279) when compared to iron-only treatment. Iron-alone treatment caused a 115% increase (p < 0.0001) in ROS at 48 h as well as increases of up to 118% when treated with 200 mM ethanol + 50 μM iron (p < 0.0001), compared to control DMEM. The study found that 10 µM curcumin DSPE-PEG increased cell viability by 17% and 41% when compared to control and iron treatment alone, respectively. Formulations reduced ROS by 36% (p = 0.0015) when compared to iron-alone treatment. In summary, encapsulated curcumin provided antioxidant capacity and reduced oxidative stress, demonstrating the therapeutic potential for curcumin formulations in ALD combined with iron dysregulation |
---|