Authors | Linge, J., Borger Magnus, West, J., Tuthill, T., Miller, M.R., Dumitriu, A., Thomas, E.L., Romu, T., Tunón, P., Bell, J.D. and Leinhard, O.D. |
---|
Abstract | Objective To investigate the value of imaging-based multivariable body composition profiling by describing its association with coronary heart disease (CHD), type 2 diabetes (T2D), and metabolic health on individual and population levels. Methods The first 6,021 participants scanned by UK Biobank were included. Body composition profiles (BCPs) were calculated including abdominal subcutaneous adipose tissue, visceral adipose tissue (VAT), thigh muscle volume, liver fat, and muscle fat infiltration (MFI), determined using magnetic resonance imaging. Associations between BCP and metabolic status were investigated using matching procedures and multivariable statistical modelling. Results Matched control analysis showed higher VAT and MFI was associated with CHD and T2D (p<0.001). Higher liver fat was associated with T2D (p<0.001) and lower liver fat with CHD (p<0.05), matching on VAT. Multivariable modelling showed lower VAT and MFI was associated with metabolic health (p<0.001), liver fat was non-significant. Associations remained significant adjusting for sex, age, BMI, alcohol, smoking, and physical activity. Conclusions Body composition profiling enabled an intuitive visualization of body composition and showed the complexity of associations between fat distribution and metabolic status, stressing the importance of a multivariable approach. Different diseases were linked to different BCPs, which could not be described by a single fat compartment alone. |
---|