Abstract | In comparison to conventional CMOS (non-adiabatic logic), the verification of the functionality and the low energy traits of adiabatic logic techniques are generally performed using transient simulations at the transistor level. However, as the size and complexity of the adiabatic system increases, the amount of time required to design and simulate also increases. Moreover, due to the complexity of synchronizing the power-clock phases, debugging of errors becomes difficult too thus, increasing the overall verification time. This paper proposes a VHSIC Hardware Descriptive Language (VHDL) based modelling approach for developing models representing the 4-phase adiabatic logic designs. Using the proposed approach, the functional errors can be detected and corrected at an early design stage so that when designing adiabatic circuits at the transistor level, the circuit performs correctly and the time for debugging the errors can substantially be reduced. The function defining the four periods of the trapezoidal AC power-clock is defined in a package which is followed by designing a library containing the behavioral VHDL models of adiabatic logic gates namely; AND/NAND, OR/NOR and XOR/XNOR. Finally, the model library is used to develop and verify the structural VHDL representation of the 4-phase 2-bit ring-counter and 3-bit up-down counter, as a design example that demonstrates the practicality of the proposed approach. |
---|